Skip to main content
Log in

Diffusion and sorption of Cs+ and Sr2+ ions onto synthetic mullite powder

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Mullite powder was chemically synthesized by the sol–gel method and analyzed using SEM and X-ray diffraction. Sorptive removal of cesium and strontium ions from an aqueous solution using the synthetic mullite powder was investigated using the batch technique. Factors expected to influence the sorption process were experimentally examined. Sorption rate and diffusion parameters were determined by the tested models, while isotherm models were employed for analyzing sorption equilibrium data. The investigated diffusion and sorption behavior of synthetic mullite toward cesium and strontium ions promotes its potential use as backfill material incorporated in the engineering barrier of radioactive disposal facilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Technical Reports Series No. 402. (2001) Handling and processing of radioactive waste from nuclear applications. International Atomic Energy Agency (IAEA), Vienna

  2. Abdel-Rahman RO, Ibrahim HA, Hung YT (2011) Liquid radioactive wastes treatment: a review. Water 3:551–565

    Article  Google Scholar 

  3. Korichi S, Keddam M, Bensmail A (2014) Effects of compression on porous texture of clay powder: application to uranium diffusion. Chem Eng Res Des 92(7):1267–1278

    Article  CAS  Google Scholar 

  4. Dulama M, Pavelescu N, Pasare L (2009) combined radioactive liquid waste treatment processes involving inorganic sorbents and micro/ultrafiltration. Rom J Phys 54:851–859

    CAS  Google Scholar 

  5. Zakaria ES, Ali IM, El-Nagger IM (2002) Thermodynamic and ion exchange equilibria of Gd3+, Eu3+ amd Ce3+ ions on H+ form of titanium(IV) antimonite. Colloid Surf A210:33–40

    Article  Google Scholar 

  6. Ilic S, Zec S, Miljkovic M, Poleti D, Pošarac-Markovic M, Janckovic DJ, Matrovic B (2014) Sol- gel synthesis and characterization of iron doped mullite. J Alloys Compd 612:259–264

    Article  CAS  Google Scholar 

  7. Tokonami M, Nakajima Y, Morimoto N (1980) The diffraction aspect and a structural model of mullite, Al(Al1 + 2xSil − 2x)O5 − x. Acta Cryst A36:270–276

    Article  CAS  Google Scholar 

  8. Shackelford James F, Doremus Robert H (2008) Ceramic and glass materials, structure, properties and processing. Springer, Berlin

    Book  Google Scholar 

  9. Ren L, Fu Z, Wang Y, Zhang F, Zhang J, Wang W, Wang H (2015) Fabrication of transparent mullite ceramic by spark plasma sintering from powders synthesized via sol–gel process combined with pulse current heating. Mater Des 83:753–759

    Article  CAS  Google Scholar 

  10. Amutharani D, Gnanam FD (1999) Low temperature pressureless sintering of sol–gel derived mullite. Mater Sci Eng A 264:254–261

    Article  Google Scholar 

  11. Initial investigations of the adsorption of phosphate on kyanite: a possible basis for a geotechnology to manage non-point source pollution. https://gsa.confex.com/gsa/2015NC/webprogram/Paper255476.html. Last visit at 27 Sept 2018

  12. Güzel Y, Hussain S, Rainer M, Bonn GK (2014) Hihly selective enrichment of phosphopeptides using aluminum silicate Anal. Methods 6:9160

    Google Scholar 

  13. Suriyanarayanan N, Nithin KVK, Bernardo E (2009) mullite glass ceramics production from coal ash and alumina by high temperature plasma. J Non-Oxide Glasses 4:247–260

    Google Scholar 

  14. Omegna A, van Bokhoven JA, Prins R (2003) Flexible aluminium coordination in alumino-silicate. Structure of zeolite H-USY and amorphous silica-alumnia. J Phys Chem B 107:8854–8860

    Article  CAS  Google Scholar 

  15. Metwally SS, Ayoub RR (2016) Modification of natural bentonite using a chelating agent for sorption of 60Co radionuclide from aqueous solution. Appl Clay Sci 127:33–40

    Article  CAS  Google Scholar 

  16. Hamed MM, Aly MI, Nayl AA (2016) Kinetics and thermodynamics studies of cobalt, strontium and caesium sorption on marble from aqueous solution. Chem Ecol 32:68–87

    Article  CAS  Google Scholar 

  17. Erten HN, Aksoyoglu S, Hatipoglu S, Gokturk H (1988) Sorption of cesium and strontium on montmorillonite and kaolinite. Radiochim Acta 44(45):147–151

    Google Scholar 

  18. Petrova M, Petrushka I (2008) Sorption removal of Cs and Sr from radioactive wastewater by modified bentonite clay. http://www2.lwr.kth.se/forskningsprojekt/Polishproject/rep15/Petrova.pdf. Accessed 1 Nov 2018

  19. Zhang A, Wang Y, Li J (2017) Cesium and strontium uptake utilizing a new ternary solid-state supramolecular adsorbent under a frame work of group partitioning. J Chem Eng Data 62(4):1440–1447

    Article  CAS  Google Scholar 

  20. Ho YS (2006) Review of second- order models for adsorption system. J Hazard Mater 36(3):681–689

    Article  CAS  Google Scholar 

  21. Ho YS, Mckay G (1998) The kinetics of sorption of basic dyes fi-om aqueous solution by sphagnum moss peat. Can J Chem Eng 76:822–827

    Article  CAS  Google Scholar 

  22. Wu F-C, Tseng R-L, Juang R-S (2009) Characteristics of Elovich equation used for the analysis of adsorption kinetics in dye-chitosan systems. Chem Eng J 150:366–373

    Article  CAS  Google Scholar 

  23. Boyd GE, Adamson AW, Myers LS (1947) The exchange adsorption of ions from aqueous solutions by organic zeolites. II. Kinetics. J Am Chem Soc 69(11):2836–2848

    Article  CAS  PubMed  Google Scholar 

  24. Reichenberg D (1953) Properties of ion-exchange resins in relation to their structure. III. Kinetics of exchange. J Am Chem Soc 75(3):589–597

    Article  CAS  Google Scholar 

  25. Mohan D, Singh KP (2002) Single- and multi-component adsorption of cadmium and zinc using activated carbon derived from bagasse—an agricultural waste. Water Res 36:2304–2318

    Article  CAS  PubMed  Google Scholar 

  26. Zhdanov VP (1991) Arrhenius parameters for rate processes on solid surfaces. Surf Sci Rep 12(5):185–242

    Article  Google Scholar 

  27. El-Kamash AM, Zaki AA, Abdel-Geleel M (2006) Modeling batch kinetics and thermodynamics of zinc and cadmium ions removal from waste solutions using synthetic zeolite A. J Hazard Mater 127(1–3):211–220

    Google Scholar 

  28. Malek A, Farooq S (1996) Comparison of isotherm models for hydrocarbon adsorption on activated carbon. AIChE J 42(11):3191–3201

    Article  CAS  Google Scholar 

  29. Krishnan KA, Anirudhan TS (2003) Removal of cadmium(II) from aqueous solutions by steam-activated sulphurised carbon prepared from sugar-cane bagasse pith: kinetics and equilibrium studies. Water SA 29(2):147–156

    Article  CAS  Google Scholar 

  30. Mohan D, Chander S (2006) Single, binary, and multicomponent sorption of iron and manganese on lignite. J Colloid Interface Sci 299(1):76–87

    Article  CAS  PubMed  Google Scholar 

  31. Sheindorf C, Rehbun M, Sheintuch M (1981) Freundlich-type multicomponent isotherm. J Colloid Interface Sci 79:136–145

    Article  CAS  Google Scholar 

  32. Alonso-Davila P, Torres-Rivera OL, Leyva-Ramos R, Ocampo-Perez R (2012) Removal of pyridine from aqueous solution by adsorption on an activated carbon cloth. Clean Soil Air Water 40(1):45–53

    Article  CAS  Google Scholar 

  33. Dubinin MM, Radushkevich LV (1947) The equation of the characteristic curve of activated charcoal. Proc Acad Sci USSR Phys Chem Sect 55:331–337

    Google Scholar 

  34. Ngah WSW, Fatinathan S (2010) Adsorption characterization of Pb(II) and Cu(II) ions onto chitosan-tripolyphosphate beads: kinetic, equilibrium and thermodynamic studies. J Environ Manag 91(4):958–969

    Article  CAS  Google Scholar 

  35. Helfferich F (1962) Ion exchange. Mc Graw Hill Book Co, New York

    Google Scholar 

  36. Rafatullah M, Sulaiman O, Hashim R, Ahmad A (2009) Adsorption of copper (II), chromium (III), nickel (II) and lead (II) ions from aqueous solutions by meranti sawdust. J Hazard Mater 170:969–977

    Article  CAS  PubMed  Google Scholar 

  37. El-Kamash AM (2008) Evaluation of Zeolite A for the sorptive removal of Cs+ and Sr2+ Ions from aqueous solutions using batch and fixed bed column operations. J. Haz. Mat. 151:432–445

    Article  CAS  Google Scholar 

  38. Zhang A, Wang Y, Li J (2017) Cesium and strontium uptake utilizing a new ternary solid-state supramolecular adsorbent under a framework of group partitioning. J Chem Eng Data 62(4):1440–1447

    Article  CAS  Google Scholar 

  39. Petrushka Ihor, Moroz Olexandr (2016) Decontamination of radioactive liquid systems by modified clay minerals. Environ Problems 1(1):45–50

    Google Scholar 

  40. Park Younjin, Shin Won Sik, Cho Sang-June (2012) Removal of Co, Sr and Cs from aqueous solution using self-assembled monolayers on mesoporous supports. Kor J Chem Eng 29(11):1556–1566

    Article  CAS  Google Scholar 

  41. Erp TSV, Trinh T, Kjelstrup S, Glavatskiy KS (2014) On the relation between the Langmuir and thermodynamic flux equations. Front Phys 1:1–14

    Google Scholar 

  42. Santamaría-Holek I, Grzywna ZJ, Rubi JM (2012) A non-equilibrium thermodynamics model for combined adsorption and diffusion processes in micro- and nanopores. arXiv:1204.38441v1[Cond-mat-mtrl-sci]

  43. Muurinen A (1993) Clay: controlling the environment. In: Proceedings of the 10th international caly conference on Adelaide, Australia, 1993, CSIRO Publishing, Melbourne, Australia

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. A. Ibrahim.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 235 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ibrahim, H.A., Hassan, H.S., Mekhamer, H.S. et al. Diffusion and sorption of Cs+ and Sr2+ ions onto synthetic mullite powder. J Radioanal Nucl Chem 319, 1–12 (2019). https://doi.org/10.1007/s10967-018-6322-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-018-6322-2

Keywords

Navigation