Skip to main content
Log in

Preparation of FeS@Fe3O4 core–shell magnetic nanoparticles and their application in uranyl ions removal from aqueous solution

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

FeS@Fe3O4 magnetic nanoparticles were prepared by ultrasonic-assisted method and characterized by TEM, FTIR, XRD, SEM, EDS, BET and VSM. The factors affecting the adsorption properties of uranyl ions by FeS@Fe3O4 were studied. Results show that the FeS@Fe3O4 nanoparticles have core–shell structure and superparamagnetism. Under the optimized conditions, the maximum adsorption capacity can reach 229.03 mg/g. The optimum adsorption conditions were as follows: pH = 6, temperature 80 °C, C0 = 35 mg/L, contact time 2.5 h, adsorbent dosage 10 mg. Adsorption kinetics and thermodynamic studies show that the adsorption process accords with the Freundlich isotherm adsorption model and the pseudo-second-order kinetic model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Feng ML, Sarma D, Qi X, Du KZ, Huang XY, Kanatzidis MG (2016) Efficient removal and recovery of uranium by a layered organic-inorganic hybrid thiostannate. J Am Chem Soc 138(38):12578–12585

    Article  CAS  PubMed  Google Scholar 

  2. Tavengwa NT, Cukrowska E, Chimuka L (2015) Sequestration of U(VI) from aqueous solutions using precipitate ion imprinted polymers endowed with oleic acid functionalized magnetite. J Radioanal Nucl Chem 304(2):933–943

    Article  CAS  Google Scholar 

  3. Gong Y, Tang J, Zhao D (2016) Application of iron sulfide particles for groundwater and soil remediation: a review. Water Res 89:309–320

    Article  CAS  PubMed  Google Scholar 

  4. Liu R, Yang Z, He Z, Wu L, Hu C, Wu W, Qu J (2016) Treatment of strongly acidic wastewater with high arsenic concentrations by ferrous sulfide (FeS): inhibitive effects of S(0)-enriched surfaces. Chem Eng J 304:986–992

    Article  CAS  Google Scholar 

  5. Suzuki T, Kawasaki T, Takao K, Harada M, Nogami M, Ikeda Y (2012) A study on selective precipitation ability of cyclic urea to U(VI) for developing reprocessing system based on precipitation method. J Nucl Sci Technol 49(10):1010–1017

    Article  CAS  Google Scholar 

  6. Tran TK, Leu HJ, Chiu KF, Lin CY (2017) Electrochemical treatment of heavy metal-containing wastewater with the removal of COD and heavy metal ions. J Chin Chem Soc 64(5):493–502

    Article  CAS  Google Scholar 

  7. Chen L, Bai Z, Zhu L, Zhang L, Cai Y, Li Y, Liu W, Wang Y, Chen L, Diwu J (2017) Ultrafast and efficient extraction of uranium from seawater using an amidoxime appended metal-organic framework. ACS Appl Mater Interfaces 9(38):32446–32451

    Article  CAS  PubMed  Google Scholar 

  8. Endrizzi F, Leggett C, Rao L (2016) Scientific basis for efficient extraction of uranium from seawater, I: understanding the chemical speciation of uranium under seawater conditions. Ind Eng Chem Res 55(15):4249–4256

    Article  CAS  Google Scholar 

  9. Wang LL, Luo F, Dang LL, Li JQ, Wu XL, Liu SJ, Luo MB (2015) Correction: ultrafast high-performance extraction of uranium from seawater without pretreatment using an acylamide- and carboxyl-functionalized metal–organic framework. J Mater Chem A 3(34):17880

    Article  CAS  Google Scholar 

  10. Zhe X, Jiangtao HU, Wang MH, Zhang WL, Shineng LI, Gao QH, Guozhong WU (2013) Properties and evaluation of amidoxime-based UHMWPE fibrous adsorbent for extraction of uranium from seawater. Sci China Chem 56(11):1504–1509

    Article  CAS  Google Scholar 

  11. Hoyer M, Zabelt D, Steudtner R, Brendler V, Haseneder R, Repke JU (2014) Influence of speciation during membrane treatment of uranium contaminated water. Sep Purif Technol 132:413–421

    Article  CAS  Google Scholar 

  12. Torkabad MG, Keshtkar AR, Safdari SJ (2017) Comparison of polyethersulfone and polyamide nanofiltration membranes for uranium removal from aqueous solution. Prog Nucl Energy 94:93–100

    Article  CAS  Google Scholar 

  13. Ma H, Hsiao BS, Chu B (2013) Ultrafine cellulose nanofibers as efficient adsorbents for removal of UO2 2+ in water. ACS Macro Lett 1(1):213–216

    Article  CAS  Google Scholar 

  14. Sprynskyy M, Kowalkowski T, Tutu H, Cukrowska EM, Buszewski B (2011) Adsorption performance of talc for uranium removal from aqueous solution. Chem Eng J 171(3):1185–1193

    Article  CAS  Google Scholar 

  15. Kaynar ÜH, Ayvacıklı M, Kaynar SÇ, Hiçsönmez Ü (2014) Removal of uranium(VI) from aqueous solutions using nanoporous ZnO prepared with microwave-assisted combustion synthesis. J Radioanal Nucl Chem 299(3):1469–1477

    Article  CAS  Google Scholar 

  16. Jing L, Lei Z, Dong F, Hudson-Edwards KA (2016) Enhancing As(V) adsorption and passivation using biologically formed nano-sized FeS coatings on limestone: implications for acid mine drainage treatment and neutralization. Chemosphere 168:529–538

    Google Scholar 

  17. Liu X, Ai L, Jiang J (2015) Interconnected porous hollow CuS microspheres derived from metal-organic frameworks for efficient adsorption and electrochemical biosensing. Powder Technol 283:539–548

    Article  CAS  Google Scholar 

  18. Qu Z, Yan L, Li L, Xu J, Liu M, Li Z, Yan N (2014) Ultraeffective ZnS nanocrystals sorbent for mercury(II) removal based on size-dependent cation exchange. ACS Appl Mater Interfaces 6(20):18026–18032

    Article  CAS  PubMed  Google Scholar 

  19. Wolthers M, Charlet L, Linde PRvD, Rickard D, Weijden CHvD (2005) Surface chemistry of disordered mackinawite (FeS). Geochim Cosmochim Acta 69(14):3469–3481

    Article  CAS  Google Scholar 

  20. Watson JHP, Ellwood DC, Deng Q, Mikhalovsky S, Hayter CE, Evans J (1995) Heavy metal adsorption on bacterially produced FeS. Miner Eng 8(10):1097–1108

    Article  CAS  Google Scholar 

  21. Fang L, Li L, Qu Z, Xu H, Xu J, Yan N (2018) A novel method for the sequential removal and separation of multiple heavy metals from wastewater. J Hazard Mater 342:617–624

    Article  CAS  PubMed  Google Scholar 

  22. Sun Y, Liu Y, Lou Z, Yang K, Lv D, Zhou J, Xu X (2018) Enhanced performance for Hg(II) removal using biomaterial (CMC/gelatin/starch) stabilized FeS nanoparticles: stabilization effects and removal mechanism. Chem Eng J 344:616–624

    Article  CAS  Google Scholar 

  23. Dzade NY, Roldan A, Leeuw NHD (2017) Structures and properties of As(OH)3 adsorption complexes on hydrated mackinawite (FeS) surfaces: a DFT-D2 study. Environ Sci Technol 51(6):3461–3470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Shao D, Ren X, Wen J, Hu S, Xiong J, Jiang T, Wang X, Wang X (2016) Immobilization of uranium by biomaterial stabilized FeS nanoparticles: effects of stabilizer and enrichment mechanism. J Hazard Mater 302:1–9

    Article  CAS  PubMed  Google Scholar 

  25. Sun Y, Lou Z, Yu J, Zhou X, Lv D, Zhou J, Baig SA, Xu X (2017) Immobilization of mercury (II) from aqueous solution using Al2O3-supported nanoscale FeS. Chem Eng J 323:483–491

    Article  CAS  Google Scholar 

  26. Chen L, Zhao D, Chen S, Wang X, Chen C (2016) One-step fabrication of amino functionalized magnetic graphene oxide composite for uranium(VI) removal. J Colloid Interface Sci 472:99–107

    Article  CAS  PubMed  Google Scholar 

  27. Yan LG, Yang K, Shan RR, Yan T, Wei J, Yu SJ, Yu HQ, Du B (2015) Kinetic, isotherm and thermodynamic investigations of phosphate adsorption onto core–shell Fe3O4@LDHs composites with easy magnetic separation assistance. J Colloid Interface Sci 448:508–516

    Article  CAS  PubMed  Google Scholar 

  28. Zhang D, Gao G, Ma W, Zhu J, Qiu G, Liu X (2013) Facile synthesis and properties of bifunctional magnetic-optical Fe3O4@ZnS nanocomposites with core-shell structure. Appl Mech Mater 320:92–98

    Article  CAS  Google Scholar 

  29. Zhao D, Zhang Q, Xuan H, Chen Y, Zhang K, Feng S, Alsaedi A, Hayat T, Chen C (2017) EDTA functionalized Fe3O4/graphene oxide for efficient removal of U(VI) from aqueous solutions. J Colloid Interface Sci 506:300–307

    Article  CAS  PubMed  Google Scholar 

  30. Tavengwa NT, Cukrowska E, Chimuka L (2016) Modeling of adsorption isotherms and kinetics of uranium sorption by magnetic ion imprinted polymers. Toxicol Environ Chem Rev 98(1):1–12

    Article  CAS  Google Scholar 

  31. Kera NH, Bhaumik M, Pillay K, Ray SS, Maity A (2017) Selective removal of toxic Cr(VI) from aqueous solution by adsorption combined with reduction at a magnetic nanocomposite surface. J Colloid Interface Sci 503:214–228

    Article  CAS  PubMed  Google Scholar 

  32. Yu Y, Yu L, Shih K, Chen JP (2018) Yttrium-doped iron oxide magnetic adsorbent for enhancement in arsenic removal and ease in separation after applications. J Colloid Interface Sci 521:252–260

    Article  CAS  PubMed  Google Scholar 

  33. Zhang S, Zhang Y, Liu J, Xu Q, Xiao H, Wang X, Xu H, Zhou J (2013) Thiol modified Fe3O4@SiO2 as a robust, high effective, and recycling magnetic sorbent for mercury removal. Chem Eng J 226(24):30–38

    CAS  Google Scholar 

  34. Iranmanesh P, Saeednia S, Mehran M, Dafeh SR (2016) Modified structural and magnetic properties of nanocrystalline MnFe2O4 by pH in capping agent free co-precipitation method. J Magn Magn Mater 425:31–36

    Article  CAS  Google Scholar 

  35. Xu Y, Ke G, Yin J, Lei W, Yang P (2019) Synthesis of thiol-functionalized hydrotalcite and its application for adsorption of uranium (VI). J Radioanal Nucl Chem 319(3):791–803

    Article  CAS  Google Scholar 

  36. Wang CF, Liu ZR, Xue GR, Lei Y, Wang Y, Zhou LM (2016) Adsorptive properties of sunflower seed shells for UO2 2+ in aqueous solution. J Nucl Radiochem 38(2):107–115

    Google Scholar 

  37. Gholizadeh A, Jafari E (2017) Effects of sintering atmosphere and temperature on structural and magnetic properties of Ni-Cu-Zn ferrite nano-particles: magnetic enhancement by a reducing atmosphere. J Magn Magn Mater 422:328–336

    Article  CAS  Google Scholar 

  38. Ma YX, Xing D, Shao WJ, Du XY, La PQ (2017) Preparation of polyamidoamine dendrimers functionalized magnetic graphene oxide for the adsorption of Hg(II) in aqueous solution. J Colloid Interface Sci 505:352–363

    Article  CAS  PubMed  Google Scholar 

  39. Li SL, Zhou YP, Liu JJ (2016) Physical chemistry (2009), 5th edn. Higher Education Press, Beijing, pp 594–595

    Google Scholar 

  40. Gao Y, Yuan Y, Ma D, Li L, Li Y, Xu W, Tao W (2014) Removal of aqueous uranyl ions by magnetic functionalized carboxymethylcellulose and adsorption property investigation. J Nucl Mater 453(1–3):82–90

    Article  CAS  Google Scholar 

  41. Dolatyari L, Yaftian MR, Rostamnia S (2016) Removal of uranium(VI) ions from aqueous solutions using Schiff base functionalized SBA-15 mesoporous silica materials. J Environ Manage 169:8–17

    Article  CAS  PubMed  Google Scholar 

  42. Lu BQ, Li M, Zhang XW, Huang CM, Wu XY, Fang Q (2018) Immobilization of uranium into magnetite from aqueous solution by electrodepositing approach. J Hazard Mater 343:255–265

    Article  CAS  PubMed  Google Scholar 

  43. Sepehrian H, Asadi Z (2012) Studies on the recovery of uranium from nuclear industrial effluent using nanoporous silica adsorbent. Int J Environ Sci Technol 9(4):629–636

    Article  CAS  Google Scholar 

  44. Zhou L, Shang C, Liu Z, Huang G, Adesina AA (2012) Selective adsorption of uranium(VI) from aqueous solutions using the ion-imprinted magnetic chitosan resins. J Colloid Interface Sci 366(1):165–172

    Article  CAS  PubMed  Google Scholar 

  45. Qian J, Zhang S, Zhou Y, Dong P, Hua D (2014) Synthesis of surface ion-imprinted magnetic microspheres by locating polymerization for rapid and selective separation of uranium(VI). RSC Adv 5(6):4153–4161

    Article  CAS  Google Scholar 

  46. Khani R, Sobhani S, Beyki MH (2016) Highly selective and efficient removal of lead with magnetic nano-adsorbent: multivariate optimization, isotherm and thermodynamic studies. J Colloid Interface Sci 466:198–205

    Article  CAS  PubMed  Google Scholar 

  47. Donia AM, Atia AA, El-Boraey H, Mabrouk DH (2006) Uptake studies of copper(II) on glycidyl methacrylate chelating resin containing Fe2O3 particles. Sep Purif Technol 49(1):64–70

    Article  CAS  Google Scholar 

  48. Zhang X, Wang J, Li R, Dai Q, Gao R, Liu Q, Zhang M (2013) Preparation of Fe3O4@C@layered double hydroxide composite for magnetic separation of uranium. Ind Eng Chem Res 52(30):10152–10159

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol Fiber Material, Huaihua University (HGY201805) and the Natural Science Foundation of Hunan Province (2017JJ2231).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengfei Yang.

Ethics declarations

Conflict of interest

All the authors do not have any possible conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Yang, P., Li, Q. et al. Preparation of FeS@Fe3O4 core–shell magnetic nanoparticles and their application in uranyl ions removal from aqueous solution. J Radioanal Nucl Chem 321, 499–510 (2019). https://doi.org/10.1007/s10967-019-06626-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-019-06626-2

Keywords

Navigation