Skip to main content
Log in

Structural, optical and photoluminescence properties of Zn1−xCexO (x = 0, 0.05 and 0.1) nanoparticles by sol–gel method annealed under Ar atmosphere

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Ce doped ZnO nanoparticles (Zn1−xCexO, x = 0.0, 0.05 and 0.1) have been synthesized by sol–gel method at annealing temperature of 500 °C for 1 h under Ar atmosphere. The synthesized samples have been characterized by powder X-ray diffraction (XRD), energy dispersive X-ray studies, UV–Visible spectrophotometer and fourier transform infrared (FTIR) spectroscopy. The XRD measurements indicate that the prepared nanoparticles have a hexagonal wurtzite structure and CeO2 crystallites. The calculated average crystalline varied from 21.97 to 15.62 nm with increase in Ce concentrations. The increase in lattice parameters reveals the substitution of Ce into ZnO lattice. The presence of functional groups and the chemical bonding is confirmed by FTIR spectra. PL spectra of the Zn1−xCexO system show that the shift in near band edge emission from 386 to 363 nm and a shift in blue band emission from 517 to 485 nm which confirms the substitution of Ce into the ZnO lattice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Golego N, Studenikin SA, Cocivera M (2000) J Electrochem Soc 147:1592

    Article  CAS  Google Scholar 

  2. Lin Y, Zhang N, Tang Z, Yuan F, Li J (1999) Adv Mater Opt Electron 9:206

    Article  Google Scholar 

  3. Wang X, Song J, Liu J, Wang ZL (2007) Science 316:102

    Article  CAS  Google Scholar 

  4. Keren K, Berman RS, Buchstab E, Sivan U, Braun E (2003) Science 302:1380

    Article  CAS  Google Scholar 

  5. Singh S, Rao MSR (2009) Phys Rev B 80:045210

    Article  Google Scholar 

  6. Alaria J, Turek P, Bernard M, Bouloudenine M, Berbadj A, Brihi N, Schmerber G, Colis S, Dinia A (2005) Chem Phys Lett 415:337

    Article  CAS  Google Scholar 

  7. Sharma P, Sreenivas K, Rao KV (2003) J Appl Phys 93:3963

    Article  CAS  Google Scholar 

  8. Yang X, Wolcott A, Wang G, Sobo A, Fitzmorris RC, Qian F, Zhang JZ, Li Y (2009) Nano Lett 9:2331

    Article  CAS  Google Scholar 

  9. Ge Ch, Xie Ch, Cai Sh (2007) Mater Sci Eng B 137:53

    Article  CAS  Google Scholar 

  10. Sharma SK, Pitale SS, Malik JM, Dubey RN, Qureshi MS (2009) J Lumin 129:140

    Article  CAS  Google Scholar 

  11. Arshad M, Azam A, Ahmed AS, Mollah S, Naqvi AH (2011) J Alloys Compd 509:8378

    Article  CAS  Google Scholar 

  12. Muthukumaran S, Gopalakrishnan R (2011) J Mater Sci: Mater Electron, doi:10.1007/s10854-011-0604-6 (Accepted )

  13. Teng XM, Fan HT, Pan SS, Ye C, Lia GH (2006) J Appl Phys 100(5):053507

    Article  Google Scholar 

  14. Dole BN, Mote VD, Huse VR, Purushotham Y, Lande MK, Jadhav KM, Shah SS (2011) Current Appl Phy 11:762

    Article  Google Scholar 

  15. Liu H, Yang J, Hua Z, Zhang Y, Yang L, Xiao L, Xie Z (2010) Appl Surf Sci 256:4162

    Article  CAS  Google Scholar 

  16. Yang J, Gao M, Yang L, Zhang Y, Lang J, Wang D, Wang Y, Liu H, Fan H (2008) Appl Surf Sci 255:2646

    Article  CAS  Google Scholar 

  17. George A, Sharma SK, Chawla S, Malik MM, Qureshi MS (2011) J Alloys Comp 509:5942

    Article  CAS  Google Scholar 

  18. Mahmoud WE (2010) J Crys Growth 312:3075

    Article  CAS  Google Scholar 

  19. Gong HC, Zhong JF, Zhou SM, Zhang B, Li ZH, Du ZL (2008) Superlattices Microstruct 44:183

    Article  CAS  Google Scholar 

  20. Cheng B, Xiao Y, Wu G, Zhang L (2004) Appl Phys Lett 84(3):416

    Article  CAS  Google Scholar 

  21. Liu C, Tang X, Mo C, Qiang Zh (2008) J Solid State Chem 181:913

    Article  CAS  Google Scholar 

  22. Dutta M, Mridha S, Basak D (2008) Appl Surf Sci 254:2743

    Article  CAS  Google Scholar 

  23. Fangli D, Ning W, Dongmei Z, Yingzhong S (2010) J Rare Earths 28(3):391

    Article  Google Scholar 

  24. Yousefi M, Amiri M, Azimirad R, Moshfegh Z (2011) J Electroanal Chem 661:106

    Article  CAS  Google Scholar 

  25. Kulal SR, Bamane SR (2010) Arch Appl Sci Res 2(6):205

    CAS  Google Scholar 

  26. Hankare PP, Chate PA, Sathe DJ, Chavan PA, Bhuse VM (2009) J Mater Sci Mater Electron 20:374

    Article  CAS  Google Scholar 

  27. Li GR, Lu XH, Zhao WX, Su CY, Tong YX (2008) Cryst Growth Des 8:1276

    Article  CAS  Google Scholar 

  28. Chandrasekharan N, Kamat PV (2000) J Phys Chem B 104:10851

    Article  CAS  Google Scholar 

  29. Lu XH, Li GR, Zhao WX, Tong YX (2008) Electrochim Acta 53:5180

    Article  CAS  Google Scholar 

  30. Jing-hai Y, Ming G, Jun ZhY, Li YL, Hui LJ, Dan WD, Xin WY, Lian LH, Gang FH, Bin WM, Zhu LF (2008) Chem Res Chin Univ 24:266

    Article  Google Scholar 

  31. Srinivasan G, Rajendra Kumar RT, Kumar J (2007) J Sol–Gel Sci Technol 43:171

    Article  CAS  Google Scholar 

  32. Mishra BG, Rao GR (2006) J Mol Catal A: Chem 243:204

    Article  CAS  Google Scholar 

  33. Pelleg J, Elish E (2002) J Vac Sci Technol A20:754

    Google Scholar 

  34. Jagannatha Reddy A, Kokila MK, Nagabhushan H, Chakradhar RPS, Shivakumar C, Rao JL, Nagabhushan BM (2011) J Alloys Compd 509:5349

    Article  Google Scholar 

  35. Rong CF, Watkins GD (1989) Phys Rev Lett 58:1486

    Article  Google Scholar 

  36. Kroger FA (1964) The chemistry of imperfect crystals. North-Holland publ. co., and Wiley, Amsterdam

    Google Scholar 

  37. Lin SS, Huang JL (2004) Surf Coat Technol 185:222

    Article  CAS  Google Scholar 

  38. Yadav RS, Mishra P, Pandey AC (2011) Inorganic Mater 46(2):163

    Article  Google Scholar 

  39. Azam A, Arham S, Ahmed M, Ansari S, Muhamed Shafeeq M, Naqvi AH (2010) J Alloys Compd 506:237

    Article  CAS  Google Scholar 

  40. Elilarassi R, Chandrasekaran G (2010) J Mater Sci: Mater Electron 21:1168

    Article  CAS  Google Scholar 

  41. Suwanboon S, Amornpitoksuk P, Haidoux A, Tedenac JC (2008) J Alloys Compd 462:335

    Article  CAS  Google Scholar 

  42. Debnath S, Islam MR, Khan MSR (2007) Bull Mater Sci 30:315

    Article  CAS  Google Scholar 

  43. Suwanboon S, Ratana T, Ratana WT (2007) J Sci Technol 4:111

    Google Scholar 

  44. Takagahara T, Takeda K (1992) Phys Rev B 46:15578

    Article  CAS  Google Scholar 

  45. Nakamoto K (1997) Infrared and Raman spectra of inorganic and coordination compounds, parts-A and B. John Wiley, New York

    Google Scholar 

  46. Alias SS, Ismail AB, Mohamad AA (2010) J Alloys Comp 499:231

    Article  CAS  Google Scholar 

  47. Du H, Yuan F, Huang S, Li J, Zhu Y (2004) Chem Lett 33:770

    Article  CAS  Google Scholar 

  48. Karunakaran C, Gomathisankar P, Manikandan G (2010) Mater Chem Phys 123:585

    Article  CAS  Google Scholar 

  49. Kumar N, Dorfman A, Hahm J (2005) J Nanosci Nanotechnol 5:1915

    Article  CAS  Google Scholar 

  50. Bagnall DM, Chen YF, Shen MY, Zhu Z, Goto T, Yao T (1998) J Cryst Growth 184:605

    Google Scholar 

  51. Vanheusden K, Seager CH, Warren WL, Tallent DR, Voigt JA (1996) J Appl Phy 79:7983

    Article  CAS  Google Scholar 

  52. Pradhan AK, Williams TM, Zhang K, Hunter D, Dadson JB, Lord K, Roy UN, Cui Y, Burger A (2006) J Nanosci Nanotechnol 6:1985

    Article  CAS  Google Scholar 

  53. Umar A, Kim SH, Lee YS, Nahm KS, Hahn YB (2005) J Cryst Growth 282:131

    Article  CAS  Google Scholar 

  54. Cheng B, Xiao Y, Wu G, Zhang L (2004) Adv Funct Mater 14(9):913

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Muthu Kumaran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muthu Kumaran, S., Gopalakrishnan, R. Structural, optical and photoluminescence properties of Zn1−xCexO (x = 0, 0.05 and 0.1) nanoparticles by sol–gel method annealed under Ar atmosphere. J Sol-Gel Sci Technol 62, 193–200 (2012). https://doi.org/10.1007/s10971-012-2708-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-012-2708-8

Keywords

Navigation