Skip to main content
Log in

Effect of hydrophobicity on the stability of sol–gel silica coatings in vacuum and their laser damage threshold

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Riede W, Allenspacher P, Schröder H, Wernham D, Lien Y (2005) Laser-induced hydrocarbon contamination in vacuum, p 59910H

  2. Jensen L, Jupe M, Madebach H, Ehlers H, Starke K, Ristau D et al (2006) Damage threshold investigations of high-power laser optics under atmospheric and vacuum conditions, 6403:64030U-U-10

  3. Pareek R, Kumbhare MN, Mukherjee C, Joshi AS, Gupta PD (2008) Effect of oil vapor contamination on the performance of porous silica sol–gel antireflection-coated optics in vacuum spatial filters of high-power neodymium glass laser. Opt Eng 47:023801

    Article  Google Scholar 

  4. Ling X, Zhao Y, Li D, Li S, Zhou M, Shao J et al (2009) Impact of organic contamination on the laser-induced damage in vacuum. Appl Surf Sci 255:9255–9258

    Article  CAS  Google Scholar 

  5. Yun C, Shi-Jie L, Hong-Bo H, Yuan-An Z, Jian-Da S, Zheng-Xiu F (2007) Influence of vacuum organic contaminations on laser-induced damage of 1064 nm anti-reflective coatings. Chin Phys Lett 24:2873

    Article  Google Scholar 

  6. Li X, Shen J (2011) The stability of sol–gel silica coatings in vacuum with organic contaminants. J Sol–Gel Sci Technol 59:539–545

    Article  CAS  Google Scholar 

  7. Sun J, Wu B, Jia H, Wu D, Xu Y (2012) Fluoroalkyl-grafted mesoporous silica antireflective films with enhanced stability in vacuum. Opt Lett 37:4095–4097

    Article  CAS  Google Scholar 

  8. Ling B, He H, Shao J (2007) Effects of water vapor in high vacuum chamber on the properties of HfO2 films. Chin Opt Lett 5:487–489

    CAS  Google Scholar 

  9. Ling X, Zhao Y, Shao J, Fan Z (2010) Effect of two organic contamination modes on laser-induced damage of high reflective films in vacuum. Thin Solid Films 519:296–300

    Article  CAS  Google Scholar 

  10. Cui Y, Zhao Y, Yu H, He H, Shao J (2008) Impact of organic contamination on laser-induced damage threshold of high reflectance coatings in vacuum. Appl Surf Sci 254:5990–5993

    Article  CAS  Google Scholar 

  11. Thomas IM, Burnham AK, Ertel J, Frieders S (1999) Method for reducing the effect of environmental contamination of sol–gel optical coatings. p 220

  12. Wang X, Shen J (2011) A review of contamination-resistant antireflective sol–gel coatings. J Sol–Gel Sci Technol 61:206–212

    Article  Google Scholar 

  13. Bien-Aimé K, Pereira A, Belin C, Gallais L, Grua P, Tovena-Pecault I et al (2009) Impact of outgassing organic contamination on laser-induced damage of optics. p 75040V

  14. Guéhenneux G, Bouchut P, Veillerot M, Pereira A, Tovena I (2005) Impact of outgassing organic contamination on laser-induced damage threshold of optics: effect of laser conditioning. p 59910F

  15. Xu Y, Wu D, Sun YH, Li ZH, Dong BZ, Wu ZH (2005) Comparative study on hydrophobic anti-reflective films from three kinds of methyl-modified silica sols. J Non Cryst Solids 351:258–266

    Article  CAS  Google Scholar 

  16. Floch H, Belleville P (1994) A scratch-resistant single-layer antireflective coating by a low temperature sol–gel route. J Sol–Gel Sci Technol 1:293–304

    Article  CAS  Google Scholar 

  17. Thomas IM (1992) Effect of binders on the damage threshold and refractive index of coatings prepared from colloidal suspensions. Laser Induc Damage Opt Mater 1:281–289

    CAS  Google Scholar 

  18. Xu Y, Zhang B, Hao Fan W, Wu D, Han Sun Y (2003) Sol–gel broadband anti-reflective single-layer silica films with high laser damage threshold. Thin Solid Films 440:180–183

    Article  CAS  Google Scholar 

  19. Sermon PA, Vong MS, Bazin NJ, Badheka R, Spriggs D (1995) Recent developments in silica sol–gel antireflection (AR) coatings. In: Proceedings of solid state lasers for application to inertial confinement fusion (ICF): International Society for Optics and Photonics, pp 464–74

  20. Tian H, Xu Y, Wu D, Wu ZH, Hai-Bing L, Yuan XD (2012) Comparision of silica anti-reflective films obtained emvia/em a sol–gel process in the presence of PEG or PVP. Acta Phys-Chimica Sinica 28:1197–1205

    CAS  Google Scholar 

  21. Xu Y, Fan WH, Li ZH, Wu D, Sun YH (2003) Antireflective silica thin films with super water repellence via a sol–gel process. Appl Opt 42:108–112

    Article  CAS  Google Scholar 

  22. Philipavičius J, Kazadojev I, Beganskienė A, Melninkaitis A, Sirutkaitis V, Kareiva A (2008) Hydrophobic antireflective silica coatings via sol–gel process. Mater Sci 14:283–287

    Google Scholar 

  23. Su D, Huang C, Hu Y, Jiang Q, Zhang L, Zhu Y (2011) Preparation of superhydrophobic surface with a novel sol–gel system. Appl Surf Sci 258:928–934

    Article  CAS  Google Scholar 

  24. Marshall KL, Culakova Z, Ashe B, Giacofei C, Rigatti AL, Kessler TJ et al. (2007) Vapor-phase-deposited organosilane coatings as hardening agents for high-peak-power laser optics. 6674: 667407–667411

  25. ISO 11254-1:2000, Lasers and laser-related equipment—determination of laser-induced damage threshold of optical surfaces—Part 1: 1-on-1 test

  26. Bom M, Wolf E (1980) Principles of optics, vol 19891. Pergamon, New York, pp 747–754

    Google Scholar 

  27. Nakajima A, Abe K, Hashimoto K, Watanabe T (2000) Preparation of hard super-hydrophobic films with visible light transmission. Thin Solid Films 376:140–143

    Article  CAS  Google Scholar 

  28. Tadanaga K, Morinaga J, Matsuda A, Minami T (2000) Superhydrophobic-superhydrophilic micropatterning on flowerlike alumina coating film by the sol–gel method. Chem Mater 12:590–592

    Article  CAS  Google Scholar 

  29. Ogawa K, Soga M, Takada Y, Nakayama I (1993) Development of a transparent and ultrahydrophobic glass plate. Jpn J Appl Phys 32:L614–L615

    Article  CAS  Google Scholar 

  30. Li X, Gross M, Green K, Oreb B, Shen J (2012) Ultraviolet laser-induced damage on fused silica substrate and its sol–gel coating. Opt Lett 37:2364–2366

    Article  CAS  Google Scholar 

  31. Li X, Gross M, Oreb B, Shen J (2012) Increased laser-damage resistance of sol–gel silica coating by structure modification. J Phys Chem C 116:18367–18371

    Article  CAS  Google Scholar 

  32. Almeida RM, Pantano CG (1990) Structural investigation of silica gel films by infrared spectroscopy. J Appl Phys 68:4225–4232

    Article  CAS  Google Scholar 

  33. Innocenzi P (2003) Infrared spectroscopy of sol–gel derived silica-based films: a spectra-microstructure overview. J Non Cryst Solids 316:309–319

    Article  CAS  Google Scholar 

  34. Latthe SS, Imai H, Ganesan V, Kappenstein C, Rao AV (2009) Optically transparent superhydrophobic TEOS-derived silica films by surface silylation method. J Sol–Gel Sci Technol 53:208–215

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (11074189, U1230113), National Key Technology Research and Development Program of China (2013BAJ01B01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Shen, J., Zhou, B. et al. Effect of hydrophobicity on the stability of sol–gel silica coatings in vacuum and their laser damage threshold. J Sol-Gel Sci Technol 68, 81–87 (2013). https://doi.org/10.1007/s10971-013-3137-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-013-3137-z

Keywords

Navigation