Skip to main content
Log in

An investigation of Zn/ZnO:Al/p-Si/Al heterojunction diode by sol–gel spin coating technique

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Present study shows the structural, morphological, optical characterization of sol–gel spin coated ZnO:Al film and investigation of device efficiency of Zn/ZnO:Al/p-Si/Al heterojunction diode structure. X-ray diffraction study indicates that film has hexagonal polycrystalline structure with (002) preferential direction. Atomic force microscope and scanning electron microscope images exhibit that surface of ZnO:Al/p-Si consists of homogenously scattered nanoparticles. The surface roughness of ZnO:Al film is found to be 15.24 nm. The band gap value of ZnO:Al film deposited on glass substrate is calculated to be 3.34 eV. The electrical characterization of Zn/ZnO:Al/p-Si/Al heterojunction structure is made by current–voltage (IV) and capacitance–voltage (CV) measurements. From these measurements, the heterojunction structure shows a rectifying behavior under a dark condition. The ideality factor and barrier height of Zn/n-ZnO:Al/p-Si/Al structure are calculated as 3.23 and 0.68 eV. The heterojunction structure have diode characteristic with rectification ratio at 64.4 at +2.0 V in the dark. The results suggest that Zn/ZnO:Al/p-Si/Al heterojunction diode can be successfully used in many optoelectronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Özgür Ü, Alivov YI, Liu C, Teke A, Doğan S, Reshchikov M, Avrutin V, Cho SJ, Morkoc H (2005) J Appl Phys 98:041301

    Article  Google Scholar 

  2. Huang C, Wang M, Deng Z, Cao Y, Liu Q, Huang Z, Liu Y, Guo W, Huang Q (2010) J Mater Sci Mater Electron 21:1221–1227

    Article  Google Scholar 

  3. Maldonado A, de la L Olvera M, Guerra ST, Asomoza R (2004) Sol Energy Sol Cell 82:75–84

    Article  Google Scholar 

  4. Huang C, Wang M, Liu Q, Cao Y, Deng Z, Huang Z, Liu Y, Huang Q, Guo W (2009) Semicond Sci Tech 24:095019

    Article  Google Scholar 

  5. Hongsingthong A, Yuna IA, Miyajima S, Konagai M (2011) Sol Energy Sol Cell 95:171–174

    Article  Google Scholar 

  6. Jayakumar OD, Gopalakrishnan IK, Sudakar C, Kulshreshtha SK (2006) J Cryst Growth 294:432–436

    Article  Google Scholar 

  7. Ruan HB, Fang L, Li DC, Saleem M, Qin GP, Kong CY (2011) Thin Solid Films 519:5078–5081

    Article  Google Scholar 

  8. Miki-Yoshida M, Paraguay-Delgado F, Estrada-López W, Andrade E (2000) Thin Solid Films 376:99–109

    Article  Google Scholar 

  9. Keskenler EF, Turgut G, Doğan S (2012) Superlattices Microstruct 52:107–115

    Article  Google Scholar 

  10. Pawar BN, Ham D-H, Mane RS, Ganesh T, Cho BW, Han SH (2008) Appl Surf Sci 254:6294–6297

    Article  Google Scholar 

  11. Chouikh F, Beggah Y, Aida MS (2011) J Mater Sci Mater Electron 22:499–505

    Article  Google Scholar 

  12. Biswal RR, Velumani S, Babu BJ, Maldonado A, Tirado-Guerra S, Castaneda L, de la L Olvera M (2010) Mater Sci Eng B 174:46–49

    Article  Google Scholar 

  13. Polyakov AY, Smirnov NB, Kozhukhova EA, Vdodin VI, Ip K, Heo YW, Norton DP, Pearton SJ (2003) Appl Phys Lett 83:1575

    Article  Google Scholar 

  14. Kim J, Yun JH, Park YC, Anderson WA (2012) Mater Lett 75:99–101

    Article  Google Scholar 

  15. Shukla RK, Srivastava A, Srivastava A, Dubey KC (2006) J Cryst Growth 294:427–431

    Article  Google Scholar 

  16. Xuea SW, Zua XT, Zheng WG, Chen MY, Xiang X (2006) Phys B 382:201–204

    Article  Google Scholar 

  17. Musat V, Teixeir B, Fortunato E, Monteiro RCC, Vilarinho P (2004) Surf Coat Tech 180–181:659–662

    Article  Google Scholar 

  18. Singh SP, Ooi ZE, Geok SNL, Goh GKL, Dodabalapur A (2011) Appl Phys Lett 98:073302

    Article  Google Scholar 

  19. Bo H, Quan MZ, Jing X, Lei Z, Sheng ZN, Feng L, Cheng S, Ling S, Yue ZC, Shan YZ, Ting YY (2009) Mater Sci Semicond Process 12:248–252

    Article  Google Scholar 

  20. Zebbar N, Kheireddine Y, Mokeddem K, Hafdallah A, Kechouane M, Aida MS (2011) Mater Sci Semicond Process 14:229–234

    Article  Google Scholar 

  21. Chirakkar S, Krupanidhi SB (2012) Thin Solid Films 520:5894–5899

    Article  Google Scholar 

  22. Huang H, Fang G, Mo X, Long H, Wang H, Li S, Li Y, Zhang Y, Pan C, Carroll DL (2012) Appl Phys Lett 101:223504

    Article  Google Scholar 

  23. He GR, Lin YJ, Chang HC, Chen YH (2012) Thin Solid Films 525:154–157

    Article  Google Scholar 

  24. Baydogan N, Karacasu O, Cimenoglu H (2012) J Sol–Gel Sci Technol 61:620–627

    Article  Google Scholar 

  25. Baydogan N, Karacasu O, Cimenoglu H (2012) Thin Solid Films 520:5790–5796

    Article  Google Scholar 

  26. Gokcen M, Bal S, Yildirim G, Gulen M, Varilci A (2012) J Mater Sci Mater Electron 23:1971–1979

    Article  Google Scholar 

  27. Farag AAM, Farooq WA, Yakuphanoglu F (2011) Microelectron Eng 88:2894–2899

    Article  Google Scholar 

  28. Aksoy S, Caglar Y (2012) Superlattices Microstruct 51:613–625

    Article  Google Scholar 

  29. Gupta B, Jain A, Mehra RM (2010) J Mater Sci Technol 26:223–227

    Article  Google Scholar 

  30. Yakuphanoglu F, Caglar Y, Caglar M, Ilican S (2010) Mater Sci Semicond Process 13:137–140

    Article  Google Scholar 

  31. Mridha S, Basak D (2007) J Appl Phys 101:083102

    Article  Google Scholar 

  32. Mridha S, Dutta M, Basak D (2009) J Mater Sci Mater Electron 20:S376–S379

    Article  Google Scholar 

  33. Keskenler EF, Tomakin M, Dogan S, Turgut G, Aydın S, Duman S, Gurbulak B (2013) J Alloys Compd 550:129–132

    Article  Google Scholar 

  34. Li X, Zhang B, Zhu H, Dong X, Xia X, Cui Y, Ma Y, Du G (2008) J Phys D Appl Phys 41:035101 (5 pp)

    Article  Google Scholar 

  35. Quemener V, Vines L, Monakhov EV, Svensson BG (2011) Thin Solid Films 519:5763–5766

    Article  Google Scholar 

  36. Hsu FH, Wang NF, Tsai YZ, Houng MP (2012) Sol Energy 86:3146–3152

    Article  Google Scholar 

  37. Turgut G, Keskenler EF, Aydın S, Dogan S, Duman S, Özçelik Ş, Gurbulak B, Esen B (2014) Phys Stat Solid A 211:80–86

    Google Scholar 

  38. Sagar P, Kumar M, Mehra RM (2005) Mater Sci Pol 23:685–696

    Google Scholar 

  39. Roknabadi MR, Behdani M, Arabshahi H, Hodeini N (2009) Int Rev Phys 12:153–157

    Google Scholar 

  40. Ilıcan S, Caglar Y, Caglar M (2008) J Optoelectron Adv Mater 10:2578–2583

    Google Scholar 

  41. Badran RI, Umar A, Al-Heniti S, Al-Hajry A, Al-Harbi T (2010) J Alloys Compd 508:375–379

    Article  Google Scholar 

  42. Lee JD, Park CY, Kim HS, Lee JJ, Choo YG (2010) J Phys D Appl Phys 43:365403 (6 pp)

    Article  Google Scholar 

  43. Karaagac H, Yengel E, Islam MS (2012) J Alloys Compd 521:155–162

    Article  Google Scholar 

  44. Ajimsha RS, Jayaraj MK, Kukrej LM (2008) J Electron Mater 37:770–775

    Article  Google Scholar 

  45. Tilley RJD (2006) Crystals and crystal structures. Wiley, England, p 255

    Google Scholar 

  46. Yakuphanoglu F, Caglar Y, Ilican S, Caglar M (2007) Phys B 394:86–92

    Article  Google Scholar 

  47. Caglar Y, Arslan A, Ilican S, Hur E, Aksoy S, Caglar M (2013) J Alloys Compd 574:104–111

    Article  Google Scholar 

  48. Al-Salman HS, Abdullah MJ (2013) Mater Sci Eng B 178:1048–1056

    Article  Google Scholar 

  49. Lupan O, Pauporte T, Viana B, Aschehoug P (2011) Electrochim Acta 56:10543–10549

    Article  Google Scholar 

  50. Keskenler EF, Dogan S, Turgut G, Gurbulak B (2012) Metall Mater Trans A 43A:5088–5095

    Article  Google Scholar 

  51. Kasar RR, Deshpande NG, Gudage YG, Vyas JC, Sharma R (2008) Phys B 403:3724–3729

    Article  Google Scholar 

  52. Turgut G, Sonmez E (2014) Metall Mater Trans A. doi:10.1007/s11661-014-2281-6

    Google Scholar 

  53. Turgut G, Keskenler EF, Aydın S, Yılmaz M, Dogan S, Duzgun B (2013) Phys Scrp 87:035602 (8 pp)

    Article  Google Scholar 

  54. Dhanam M, Manoj PK, Rajeev R, Prabhu R (2005) J Cryst Growth 280:425–435

    Article  Google Scholar 

  55. Ravichandran K, Muruganantham G, Sakthivel B (2009) Phys B 404:4299–4302

    Article  Google Scholar 

  56. Akbari B, Tavandashti MP, Zandrahimi M (2011) Iran J Mater Sci Eng 8:48–56

    Google Scholar 

  57. Chen JT, Wang J, Zhang F, Zhang GA, Wu ZG, Yan PX (2008) J Cryst Growth 310:2627–2632

    Article  Google Scholar 

  58. Caglar M, Ilican S, Caglar Y (2009) Thin Solid Films 517:5023–5028

    Article  Google Scholar 

  59. Choi BG, Kim IH, Kim DH, Lee KS, Lee TS, Cheong B, Baik YJ, Kim WM (2005) J Eur Ceram Soc 25:2161–2165

    Article  Google Scholar 

  60. Maldonado A, Tirado-Guerra S, Cázares JM, de la L Olvera M (2010) Thin Solid Films 518:1815–1820

    Article  Google Scholar 

  61. Turgut G, Keskenler EF, Aydın S, Dogan S, Duman S, Sonmez E, Esen B, Duzgun B (2013) Mater Lett 102–103:106–108

    Article  Google Scholar 

  62. Mass J, Bhattacharya P, Katiyar RS (2003) Mater Sci Eng B 103:9–15

    Article  Google Scholar 

  63. Lee HW, Lau SP, Wang YG, Tse KY, Hng HH, Tay BK (2004) J Cryst Growth 268:596–601

    Article  Google Scholar 

  64. Rhoderick EH, Williams RH (1988) Metal–semiconductor contacts, 2nd edn. Clarendon, Oxford

    Google Scholar 

  65. Jing-Jing M, Ke-Xin J, Bing-Cheng L, Fei F, Hui X, Chao-Chao Z, Chang-Le C (2010) Chin Phys Lett 27:107304

    Article  Google Scholar 

  66. Dutta M, Basak D (2008) Appl Phys Lett 92:212112

    Article  Google Scholar 

  67. Ziel AV (1968) Solid state physical electron, 2nd edn. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  68. Duman S, Gürbulak B, Dogan S, Türüt A (2011) Vacuum 85:798–801

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Duman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turgut, G., Duman, S., Özçelik, F.S. et al. An investigation of Zn/ZnO:Al/p-Si/Al heterojunction diode by sol–gel spin coating technique. J Sol-Gel Sci Technol 71, 589–596 (2014). https://doi.org/10.1007/s10971-014-3410-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-014-3410-9

Keywords

Navigation