Skip to main content
Log in

Structural and optical properties of TiO2 thin films prepared by spin coating

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Transparent semiconducting thin films of titanium oxide (TiO2) were deposited on glass substrates by the sol–gel method and spin-coating technique. The physical properties of the prepared films were studied as a function of the number of spun-cast layers. The microstructure and surface morphology of the TiO2 films were characterized by X-ray diffraction (XRD) and atomic force microscopy (AFM), with respect to the film thickness. The XRD analysis reveals that the films are polycrystalline with an anatase crystal structure and a preferred grain orientation in the (101) direction. The morphological properties were investigated by AFM, which shows a porous morphology structure for the films. The optical properties of the films were characterized by UV–Visible spectrophotometry, which shows that the films are highly transparent in the visible region and their transparency is slightly influenced by the film thickness, with an average value above 80 %. The dependence of the refractive index (n), extinction coefficient (k), and absorption coefficient (α) of the films on the wavelength was investigated. A shift in the optical band gap energy of the films from 3.75 to 3.54 eV, as a function of the film thickness, has been observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chen TL, Furubayashi Y, Hirose Y, Hitosugi T, Shimada T, Hasegawa T (2007) J Phys D Appl Phys 40:5961

    Article  Google Scholar 

  2. Sakhno OV, Goldenberg LM, Stumpe J, Smornova TN (2007) Nanotechnology 18:105704

    Article  Google Scholar 

  3. Prajna PD, Mohapatra SK, Mano M (2008) J Phys D Appl Phys 41:245103

    Article  Google Scholar 

  4. O’Regan Grätzel (1991) Nature 353:737

    Article  Google Scholar 

  5. Kitano M, Matsuoka M, Ueshima M, Anpo M (2007) Appl Catal A Gen 325:1

    Article  Google Scholar 

  6. Kment Š, Gregora I, Kmentová H, Novotná P, Hubička Z, Krýsa J, Sajdl P, Dejneka A, Brunclíková M, Jastrabík L, Hrabovský M (2012) J Sol–Gel Sci Technol 63:294

    Article  Google Scholar 

  7. Al-Homoudi Ibrahim A, Thakur JS, Naik R, Auner GW, Newaz G (2007) Appl Surf Sci 253:8607

    Article  Google Scholar 

  8. San Vicente G, Morales A, Gutiérrez MT (2002) Thin Solid Films 403–404:335

    Article  Google Scholar 

  9. Gräzel M (1989) Heterogeneous photochemical electron transfer, XRC Press, Inc

  10. Serpone N, Lawless D, Khairutdinov R (1995) J Phys Chem 99:16646

    Article  Google Scholar 

  11. Rath C, Mohanty P, Pandey AC, Mishra NC (2009) J Phys D Appl Phys 42:205101

    Article  Google Scholar 

  12. Scepanovic M. et al. (2009) Acta Phys Polonica A 116

  13. Kingon AI, Maris JP, Steiffer SK (2000) Nature (London) 406:1032

    Article  Google Scholar 

  14. Li W, Ni C, Lin H, Huang CP, Ismat Shah S (2004) J Appl Phys 96(11):6663

    Article  Google Scholar 

  15. Zhang H, Banfield JF (1999) Am. Mineral Am Mineral 1999(84):528–535

    Google Scholar 

  16. Reidy DJ, Holmes JD, Morris MA (2006) J Eur Ceram Soc 26:1527

    Article  Google Scholar 

  17. Kumar KP, Keizer K, Buggraaf AJ, Okubo T, Nagamoto H (1993) J Mater Chem 3:1151

    Article  Google Scholar 

  18. Pomoni K, Vomvas A, Trapalis CHR (2008) J Non-Cryst Solids 354:4448

    Article  Google Scholar 

  19. Morozova M, Kluson P, Krysa J, Zlamal M, Solcova O, Kment S, Steck T (2009) J Sol–Gel Sci Technol 52:398

    Article  Google Scholar 

  20. Morozova M, Kluson P, Krysa J, Gwenin Ch, Solcova O (2011) J Sol–Gel Sci Technol 58:175

    Article  Google Scholar 

  21. Natarajan C, Fukunaga N, Nogami G (1998) Thin Solid Films 322:6

    Article  Google Scholar 

  22. Masahiro Terashima, Narumi Inoue, Shigeru Kashiwabara, Ryozo Fujimoto (2001) Appl Surf Sci 169–170:535

    Google Scholar 

  23. Lianchao Sun, Ping Hou (2004) Thin Solid Films 455–456:525

    Google Scholar 

  24. Sun H, Wang C, Pang S, Li X, Tao Y, Tang H, Liu M (2008) J Non-Cryst Solids 354:1440

    Article  Google Scholar 

  25. Boukrouh S, Bensaha R, Bourgeois S, Finot E, Marco de Lucas MC (2008) Thin Solid Films 516:6353

    Article  Google Scholar 

  26. Hu L, Yoko T, Kozuka H, Sakka S (1992) Thin Solid Films 219:18

    Article  Google Scholar 

  27. Kajutvichyanukul P, Ananpattarachai J, Pongpom S (2005) Sci Technol Adv Mater 6:352

    Article  Google Scholar 

  28. Manifacier JC, Gasiot J, Fillard JP (1976) J Phys E Sci Instrum 9:1002

    Article  Google Scholar 

  29. Singh MK, Agarwal A, Gopal R, Swarnkar RK, Kotnala RK (2011) J Mater Chem 21:11074

    Article  Google Scholar 

  30. Warren BE (1990) X-ray diffraction. Dover, New York 251

    Google Scholar 

  31. Swanepoel R (1983) J Phys E Sci Instrum 16:1214–1222

    Article  Google Scholar 

  32. Tauc J, Grigorovici R, Vancu A (1966) Phys Status Solid (b) 15:627

    Article  Google Scholar 

  33. Oh H, Krantz J, Litzov I, Stubhan T, Pinna L, Brabec CJ (2011) Sol Energy Mater Sol Cells 95:2194

    Article  Google Scholar 

  34. Teresa M, Viseu R, Isabel M, Ferreira C (1999) Vacuum 52:115

    Article  Google Scholar 

  35. Park YR, Kim KJ (2005) Thin Solid Films 48434

  36. Urbach F (1953) J Phys Rev 92:1324

    Article  Google Scholar 

  37. Mott N, Davis E (1979) Electronic process in non-crystalline materials, 2nd edn. Clarendon Press, Oxford

    Google Scholar 

  38. Abdel-Kader A, Higazy A, Elkholy M (1991) J Mater Sci Mater Electron 2:204

    Article  Google Scholar 

  39. Choudhury B, Choudhury A (2014) PhysicaE56 364–371

  40. Yakuphanoglu F (2006) Opt Mater 29:253

    Article  Google Scholar 

  41. Yakuphanoglu F, Cukurovali A, Yilmaz I (2004) Phys B 353:210

    Article  Google Scholar 

  42. Marchand C. Characterisation of TiO2 thin films and multilayer anti-reflective coatings, Horiba Jobin Yvon UVISEL Application Note, Ref. SE—07

  43. Fernández-Rodríguez M, Ramos G, Del Monte F, Levy D, Alvarado CG, Núñez A, Álvarez-Herrero A (2004) Thin Solid Films 455–456:545

    Article  Google Scholar 

  44. Eiamchai P, Chindaudom P, Pokaipisit A, Limsuwan P (2009) Curr Appl Phys 9:707

    Article  Google Scholar 

  45. Amassian A, Desjardins P, Martinu L (2004) Thin Solid Films 447–448:40

    Article  Google Scholar 

  46. Meng LJ, Teixeira V, Cui HN, Placido F, Xu Z, Dos Santos MP (2006) Appl Surf Sci 252:7970

    Article  Google Scholar 

  47. Wells AF (1984) Structural inorganic chemistry, 5th edn. Claredon Press, Oxford

    Google Scholar 

  48. Ohyama M, Kozuka H, Yoko T (1997) Thin Solid Films 306:78

    Article  Google Scholar 

  49. Kingery WD, Bowen HK, Uhlmann DR (1976) Introduction to ceramics. Wiley, New York

    Google Scholar 

  50. Yoldas BE, Partlow PW (1985) Thin Solid Films 129:1

    Article  Google Scholar 

  51. Mechiakh R, Bensaha R (2006) C R Phys 7:464

    Article  Google Scholar 

  52. Alam MJ, Cameron DC (2002) J Sol–Gel Sci Technol 25:137

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Sta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sta, I., Jlassi, M., Hajji, M. et al. Structural and optical properties of TiO2 thin films prepared by spin coating. J Sol-Gel Sci Technol 72, 421–427 (2014). https://doi.org/10.1007/s10971-014-3452-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-014-3452-z

Keywords

Navigation