Skip to main content
Log in

Room-temperature multiferroic properties of 0.6BiFeO3–0.4(Bi0.5Na0.5)(1−x)Ba x TiO3 solid-solution ceramics

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The 0.6BiFeO3–0.4(Bi0.5Na0.5)(1−x)Ba x TiO3 (short for BF-BN(1−x)Ba x T) (x = 0, 0.2, 0.3, 0.4, 0.5) solid-solution ceramics were fabricated by a sol–gel method. The presence of constituent phases in ceramics was investigated by X-ray diffraction. It indicates that all of the samples are single phase. Not only that, it also proves the rhombohedral structure of the samples. Multiferroic properties dependent on the doping content of Ba ions were studied systematically. The ferroelectricity and ferromagnetism were tested, displaying the maximum values of remnant polarization and remnant magnetization at x = 0.4 simultaneously. With the increasing in x, the peak of dielectric constant depending on temperature shifts toward to the lower temperature range. In addition, the dielectric diffuse degree also increases monotonically as x increases to 0.5.

Graphical Abstract

(a–e) Magnetization hysteresis loops of BF-BN(1−x)Ba x T (x = 0, 0.2, 0.3, 0.4, 0.5) solid solutions at room temperature and (f) the evolutions of M r and H c with x.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Spaldin NA, Fiebig M (2005) The renaissance of magnetoelectric multiferroics. Science 309:391–392

    Article  Google Scholar 

  2. Nan CW, Bichurin MI, Dong SX, Viehland D, Srinivasan G (2008) Multiferroic magnetoelectric composites: historical perspective, status, and future directions. J Appl Phys 103:031101

    Article  Google Scholar 

  3. Eerenstein W, Mathur ND, Scott JF (2006) Multiferroic and magnetoelectric materials. Nature 442:759–765

    Article  Google Scholar 

  4. Chaudhuri AR, Krupanidhi SB (2010) Investigation of true remnant polarization response in heterostructured artificial biferroics. Solid State Commun 150:660–662

    Article  Google Scholar 

  5. Hill NA (2000) Why are there so few magnetic ferroelectric. J Phys Chem B 104:6694–6709

    Article  Google Scholar 

  6. Kumar N, Panwar N, Gahtori B, Singh N, Kishan H, Awana VPS (2010) Structural, dielectric and magnetic properties of Pr substituted Bi1−x Pr x FeO3. J Alloy Compd 501:29–32

    Article  Google Scholar 

  7. Feridoon A, Robert F, Michael T, Robert C, Floriana T, David C (2010) Microstructure and properties of Co-, Ni-, Zn-, Nb- and W-modified multiferroic BiFeO3 ceramics. J Eur Ceram Soc 30:727–736

    Article  Google Scholar 

  8. Kumar MM, Palkar VR, Srinivas K, Suryanarayana SV (2000) Ferroelectricity in a pure BiFeO3 ceramic. Appl Phys Lett 76:2764

    Article  Google Scholar 

  9. Ghosh AK, Dwivedi GD, Chatterjee B, Rana B, Barman A, Chatterjee S, Yang HD (2013) Role of codoping on multiferroic properties at room temperature in BiFeO3 ceramic. Solid State Commun 166:22–26

    Article  Google Scholar 

  10. Sakata K, Takenaka T, Naitou Y (1992) Phase relations, dielectric and piezoelectric properties of ceramics in the system (Bi0.5Na0.5)TiO3–PbTiO3. Ferroelectrics 131:219–226

    Article  Google Scholar 

  11. Huo SX, Yuan SL, Qiu Y, Ma ZZ, Wang CH (2012) Crystal structure and multiferroic properties of BiFeO3–Na0.5K0.5NbO3 solid solution ceramics prepared by Pechini method. Mater Lett 68:8–10

    Article  Google Scholar 

  12. Ma ZZ, Tian ZM, Li JQ, Wang CH, Huo SX, Duan HN, Yuan SL (2011) Enhanced polarization and magnetization in multiferroic (1 − x)BiFeO3xSrTiO3 solid solution. Solid State Sci 13:2196–2200

    Article  Google Scholar 

  13. Dorcet V, Trolliard G, Boullay P (2008) Reinvestigation of phase transitions in Na0.5Bi0.5TiO3 by TEM. Part 1: first order rhombohedral to orthorhombic phase transition. Chem Mater 20:5061–5073

    Article  Google Scholar 

  14. Wu JG, Kang GQ, Liu HJ, Wang J (2009) Ferromagnetic, ferroelectric and fatigue behavior of (111)-oriented BiFeO3/(Bi0.5Na0.5)TiO3 lead free bilayered thin films. Appl Phys Lett 94:172906

    Article  Google Scholar 

  15. Singh A, Pandey V, Kotnala RK, Pandey D (2008) Direct evidence for multiferroic magnetoelectric coupling in 0.9BiFeO3–0.1BaTiO3. Phys Rev Lett 101:247602

    Article  Google Scholar 

  16. Tian ZM, Zhang YS, Yuan SL, Wu MS, Wang CH, Ma ZZ, Huo SX, Duan HN (2012) Enhanced multiferroic properties and tunable magnetic behavior in multiferroic BiFeO3–Bi0.5Na0.5TiO3 solid solutions. Mater Sci Eng, B 177:74–78

    Article  Google Scholar 

  17. Lei ZW, Huang Y, Liu M, Ge W, Ling YH, Peng R, Mab XY, Chen XB, Lu YL (2014) Ferroelectric and ferromagnetic properties of Bi7−x La x Fe1.5Co1.5Ti3O21 ceramics prepared by the hot-press method. J Alloy Compd 600:168–171

    Article  Google Scholar 

  18. Kumar M, Shankar S, Kotnala RK, Parkash O (2013) Evidences of magneto-electric coupling in BFO-BT solid solutions. J Alloy Compd 577:222–227

    Article  Google Scholar 

  19. Qin HB, Zhang HL, Zhang BP, Xu LH (2011) Hydrothermal synthesis of perovskite BiFeO3–BaTiO3 crystallites. J Am Ceram Soc 94:3671–3674

    Article  Google Scholar 

  20. Kim JW, Do D, Kim SS (2012) Enhanced electrical properties of rare-earth-substituted (Bi0.9RE0.1)(Fe0.975Cr0.025)O3 (RE = Nd, Gd, Eu) thin films. J Korean Phys Soc 61:1404–1408

    Article  Google Scholar 

  21. Leontsev SO, Eitel RE (2009) Dielectric and piezoelectric properties in Mn-modified (1 − x)BiFeO3xBaTiO3 ceramics. J Am Ceram Soc 92:2957–2961

    Article  Google Scholar 

  22. Wu MS, Huang ZB, Han CX, Yuan SL, Lu CL, Xia SC (2012) Enhanced multiferroic properties of BiFeO3 ceramics by Ba and high-valence Nb co-doping. Solid State Commun 152:2142–2146

    Article  Google Scholar 

  23. Katlakunta S, Raju P, Meena SS, Srinath S, Sandhya R, Kuruva P, Murthy SR (2014) Multiferroic properties of microwave sintered BaTiO3–SrFe12O19 composites. Phys B 448:323–326

    Article  Google Scholar 

  24. Merz WJ (1949) The electric and optical behavior of BaTiO3 single-domain crystals. Phys Rev 76:1221–1225

    Article  Google Scholar 

  25. Smolensky GA, Isupov VA, Agranovskaya AI, Krainik NN (1961) New ferroelectrics of complex composition. Sov Phys Solid State 2:2651–2654

    Google Scholar 

  26. Palkar VR, Kundaliya DC, Malik SK, Bhattacharya S (2004) Magnetoelectricity at room temperature in the Bi0.9−x Tb x La0.1FeO3. Phys Rev B 69:212102

    Article  Google Scholar 

  27. Meera R, Yadav KL (2013) Structural, dielectric and ferroelectric properties of Ba1−x (Bi0.5Na0.5) x TiO3. Ceram Int 39:3627–3633

    Article  Google Scholar 

  28. Uchino K, Nomura S (1982) Critical exponents of the dielectric constants in diffused-phase-transition crystals. Ferroelectrics 44:55–61

    Article  Google Scholar 

  29. Tian ZM, Yuan SL, Wang XL, Zheng XF, Yin SY, Wang CH, Liu L (2009) Size effect on magnetic and ferroelectric properties in Bi2Fe4O9 multiferroic ceramics. J Appl Phys 106:103912

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11174092 and 11474111). We would like to thank the staff of Analysis Center of HUST for their assistance in various measurements.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. L. Yuan or Z. M. Tian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, C.M., Wang, L.G., Yuan, S.L. et al. Room-temperature multiferroic properties of 0.6BiFeO3–0.4(Bi0.5Na0.5)(1−x)Ba x TiO3 solid-solution ceramics. J Sol-Gel Sci Technol 76, 289–297 (2015). https://doi.org/10.1007/s10971-015-3776-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-015-3776-3

Keywords

Navigation