Skip to main content
Erschienen in: Journal of Sol-Gel Science and Technology 3/2016

01.03.2016 | Review Paper: Sol-gel and hybrid materials for biological and health (medical) applications

Review of aerogel-based materials in biomedical applications

verfasst von: Janja Stergar, Uroš Maver

Erschienen in: Journal of Sol-Gel Science and Technology | Ausgabe 3/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Due to their many excellent properties, aerogels attract much interest in various applications, ranging from construction to medicine. Over the last decades, their potential was practically exploited only in non-medical fields of use, although many aerogel materials, either organic, inorganic or hybrid, were proven biocompatible. Some aerogel compositions have been patented at the verge of the millennium, but the clinical use of aerogels remains very limited. This review intends to shed some more light in regard to their potential in biomedical applications as can be deduced from the more recent progressive research of their capabilities in regard to different compositions. The review covers many recent studies, but includes older research that significantly affected the development of aerogel-based materials over the years, as well. After a short introduction, covering the common aerogel properties and their possible classification options, the review is structured based on their different possible biomedical applications. Finally, it focuses on the potential of aerogels in regenerative medicine.

Graphical Abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Fricke J, Tillotson T (1997) Aerogels: production, characterization, and applications. Thin Solid Films 297(1–2):212–223CrossRef Fricke J, Tillotson T (1997) Aerogels: production, characterization, and applications. Thin Solid Films 297(1–2):212–223CrossRef
2.
Zurück zum Zitat Akimov YK (2003) Fields of application of aerogels (review). Instrum Exp Technol 46(3):287–299CrossRef Akimov YK (2003) Fields of application of aerogels (review). Instrum Exp Technol 46(3):287–299CrossRef
3.
Zurück zum Zitat Yin W, Rubenstein D (2011) Biomedical applications of aerogels. In: Aegerter MA, Leventis N, Koebel MM (eds) Aerogels handbook. Advances in sol–gel derived materials and technologies. Springer, New York, pp 683–694 Yin W, Rubenstein D (2011) Biomedical applications of aerogels. In: Aegerter MA, Leventis N, Koebel MM (eds) Aerogels handbook. Advances in sol–gel derived materials and technologies. Springer, New York, pp 683–694
5.
Zurück zum Zitat Hrubesh LW (1998) Aerogel applications. J Non-Cryst Solids 225(1–3):335–342CrossRef Hrubesh LW (1998) Aerogel applications. J Non-Cryst Solids 225(1–3):335–342CrossRef
6.
Zurück zum Zitat Husing N, Schubert U (1998) Aerogels airy materials: chemistry, structure, and properties. Angew Chem Int Edit 37(1–2):23–45 Husing N, Schubert U (1998) Aerogels airy materials: chemistry, structure, and properties. Angew Chem Int Edit 37(1–2):23–45
7.
Zurück zum Zitat Rajendar RM, Michael AM, Vasudha S, Bano S, Raj RR, Subhas CK, Mark AM (2015) Silk fibroin aerogels: potential scaffolds for tissue engineering applications. Biomed Mater 10(3):035002CrossRef Rajendar RM, Michael AM, Vasudha S, Bano S, Raj RR, Subhas CK, Mark AM (2015) Silk fibroin aerogels: potential scaffolds for tissue engineering applications. Biomed Mater 10(3):035002CrossRef
8.
Zurück zum Zitat García-González CA, Jin M, Gerth J, Alvarez-Lorenzo C, Smirnova I (2015) Polysaccharide-based aerogel microspheres for oral drug delivery. Carbohyd Polym 117:797–806CrossRef García-González CA, Jin M, Gerth J, Alvarez-Lorenzo C, Smirnova I (2015) Polysaccharide-based aerogel microspheres for oral drug delivery. Carbohyd Polym 117:797–806CrossRef
9.
Zurück zum Zitat Quraishi S, Martins M, Barros AA, Gurikov P, Raman SP, Smirnova I, Duarte ARC, Reis RL (2015) Novel non-cytotoxic alginate–lignin hybrid aerogels as scaffolds for tissue engineering. J Supercrit Fluids 105:1–8CrossRef Quraishi S, Martins M, Barros AA, Gurikov P, Raman SP, Smirnova I, Duarte ARC, Reis RL (2015) Novel non-cytotoxic alginate–lignin hybrid aerogels as scaffolds for tissue engineering. J Supercrit Fluids 105:1–8CrossRef
10.
Zurück zum Zitat Sun YR, Yang MX, Yu F, Chen JH, Ma J (2015) Synthesis of graphene aerogel adsorbents and their applications in water treatment. Prog Chem 27(8):1133–1146 Sun YR, Yang MX, Yu F, Chen JH, Ma J (2015) Synthesis of graphene aerogel adsorbents and their applications in water treatment. Prog Chem 27(8):1133–1146
11.
Zurück zum Zitat Gao T, Jelle BP, Gustavsen A, He JY (2015) Synthesis and characterization of aerogel glass materials for window glazing applications. Adv Bioceram Porous Ceram Vii:140–149 Gao T, Jelle BP, Gustavsen A, He JY (2015) Synthesis and characterization of aerogel glass materials for window glazing applications. Adv Bioceram Porous Ceram Vii:140–149
12.
Zurück zum Zitat Rudaz C, Courson R, Bonnet L, Calas-Etienne S, Sallee H, Budtova T (2014) Aeropectin: fully biomass-based mechanically strong and thermal superinsulating aerogel. Biomacromolecules 15(6):2188–2195CrossRef Rudaz C, Courson R, Bonnet L, Calas-Etienne S, Sallee H, Budtova T (2014) Aeropectin: fully biomass-based mechanically strong and thermal superinsulating aerogel. Biomacromolecules 15(6):2188–2195CrossRef
13.
Zurück zum Zitat Veronovski A, Tkalec G, Knez Z, Novak Z (2014) Characterisation of biodegradable pectin aerogels and their potential use as drug carriers. Carbohyd Polym 113:272–278CrossRef Veronovski A, Tkalec G, Knez Z, Novak Z (2014) Characterisation of biodegradable pectin aerogels and their potential use as drug carriers. Carbohyd Polym 113:272–278CrossRef
14.
Zurück zum Zitat Pierre AC, Pajonk GM (2002) Chemistry of aerogels and their applications. Chem Rev 102(11):4243–4266CrossRef Pierre AC, Pajonk GM (2002) Chemistry of aerogels and their applications. Chem Rev 102(11):4243–4266CrossRef
15.
Zurück zum Zitat Barnyakov AY, Barnyakov MY, Bobrovnikov VS, Buzykaev AR, Gulevich VV, Danilyuk AF, Katcin AA, Kononov SA, Kravchenko EA, Kuyanov IA, Onuchin AP, Ovtin IV, Rodyakin VA (2014) Threshold aerogel Cherenkov counters of the KEDR detector. J Instrum 9:C09005CrossRef Barnyakov AY, Barnyakov MY, Bobrovnikov VS, Buzykaev AR, Gulevich VV, Danilyuk AF, Katcin AA, Kononov SA, Kravchenko EA, Kuyanov IA, Onuchin AP, Ovtin IV, Rodyakin VA (2014) Threshold aerogel Cherenkov counters of the KEDR detector. J Instrum 9:C09005CrossRef
16.
Zurück zum Zitat Tonguc BT, Citci S (2014) Aerogel efficiencies of threshold Cherenkov counters. Arab J Sci Eng 39(7):5739–5743CrossRef Tonguc BT, Citci S (2014) Aerogel efficiencies of threshold Cherenkov counters. Arab J Sci Eng 39(7):5739–5743CrossRef
17.
Zurück zum Zitat Sabri F, Marchetta JG, Rifat Faysal KM, Brock A, Roan E (2014) Effect of aerogel particle concentration on mechanical behavior of impregnated RTV 655 compound material for aerospace applications. Adv Mater Sci Eng. doi:10.1155/2014/716356 Sabri F, Marchetta JG, Rifat Faysal KM, Brock A, Roan E (2014) Effect of aerogel particle concentration on mechanical behavior of impregnated RTV 655 compound material for aerospace applications. Adv Mater Sci Eng. doi:10.​1155/​2014/​716356
18.
Zurück zum Zitat Randall JP, Meador MAB, Jana SC (2011) Tailoring mechanical properties of aerogels for aerospace applications. ACS Appl Mater Inter 3(3):613–626CrossRef Randall JP, Meador MAB, Jana SC (2011) Tailoring mechanical properties of aerogels for aerospace applications. ACS Appl Mater Inter 3(3):613–626CrossRef
19.
Zurück zum Zitat Zhang XX, Wei GS, Yu F (2005) Influence of some parameters on effective thermal conductivity of nano-porous aerogel super insulator. In: HT2005: proceedings of the ASME summer heat transfer conference 2005, vol 1 pp 7–12 Zhang XX, Wei GS, Yu F (2005) Influence of some parameters on effective thermal conductivity of nano-porous aerogel super insulator. In: HT2005: proceedings of the ASME summer heat transfer conference 2005, vol 1 pp 7–12
20.
Zurück zum Zitat Venkataraman M, Mishra R, Arumugam V, Jamshaid H, Militky J (2015) Acoustic properties of aerogel embedded nonwoven fabrics. In: 6th International conference on Nanocon 2014, pp 24–130 Venkataraman M, Mishra R, Arumugam V, Jamshaid H, Militky J (2015) Acoustic properties of aerogel embedded nonwoven fabrics. In: 6th International conference on Nanocon 2014, pp 24–130
21.
Zurück zum Zitat Buratti C, Moretti E, Belloni E, Agosti F (2014) Development of innovative aerogel based plasters: preliminary thermal and acoustic performance evaluation. Sustain Basel 6(9):5839–5852CrossRef Buratti C, Moretti E, Belloni E, Agosti F (2014) Development of innovative aerogel based plasters: preliminary thermal and acoustic performance evaluation. Sustain Basel 6(9):5839–5852CrossRef
22.
Zurück zum Zitat Wang JC, Shen J, Ni XY, Wang B, Wang XD, Li J (2010) Acoustic properties of nanoporous silica aerogel. Rare Metal Mater Eng 39:14–17 Wang JC, Shen J, Ni XY, Wang B, Wang XD, Li J (2010) Acoustic properties of nanoporous silica aerogel. Rare Metal Mater Eng 39:14–17
23.
24.
Zurück zum Zitat Julio MD, Ilharco LM (2014) Superhydrophobic hybrid aerogel powders from waterglass with distinctive applications. Microporous Mesoporous Mater 199:29–39CrossRef Julio MD, Ilharco LM (2014) Superhydrophobic hybrid aerogel powders from waterglass with distinctive applications. Microporous Mesoporous Mater 199:29–39CrossRef
25.
Zurück zum Zitat Veres P, Lopez-Periago AM, Lazar I, Saurina J, Domingo C (2015) Hybrid aerogel preparations as drug delivery matrices for low water-solubility drugs. Int J Pharm 496(2):360–370CrossRef Veres P, Lopez-Periago AM, Lazar I, Saurina J, Domingo C (2015) Hybrid aerogel preparations as drug delivery matrices for low water-solubility drugs. Int J Pharm 496(2):360–370CrossRef
26.
Zurück zum Zitat Gaudio PD, Auriemma G, Mencherini T, Porta GD, Reverchon E, Aquino RP (2013) Design of alginate-based aerogel for nonsteroidal anti-inflammatory drugs controlled delivery systems using prilling and supercritical-assisted drying. J Pharm Sci 102(1):185–194CrossRef Gaudio PD, Auriemma G, Mencherini T, Porta GD, Reverchon E, Aquino RP (2013) Design of alginate-based aerogel for nonsteroidal anti-inflammatory drugs controlled delivery systems using prilling and supercritical-assisted drying. J Pharm Sci 102(1):185–194CrossRef
27.
Zurück zum Zitat Garcia-Gonzalez CA, Alnaief M, Smirnova I (2011) Polysaccharide-based aerogels-promising biodegradable carriers for drug delivery systems. Carbohyd Polym 86(4):1425–1438CrossRef Garcia-Gonzalez CA, Alnaief M, Smirnova I (2011) Polysaccharide-based aerogels-promising biodegradable carriers for drug delivery systems. Carbohyd Polym 86(4):1425–1438CrossRef
28.
Zurück zum Zitat Ulker Z, Erkey C (2014) An emerging platform for drug delivery: aerogel based systems. J Control Release 177:51–63CrossRef Ulker Z, Erkey C (2014) An emerging platform for drug delivery: aerogel based systems. J Control Release 177:51–63CrossRef
29.
Zurück zum Zitat Mikkonen KS, Parikka K, Ghafar A, Tenkanen M (2013) Prospects of polysaccharide aerogels as modern advanced food materials. Trends Food Sci Technol 34(2):124–136CrossRef Mikkonen KS, Parikka K, Ghafar A, Tenkanen M (2013) Prospects of polysaccharide aerogels as modern advanced food materials. Trends Food Sci Technol 34(2):124–136CrossRef
30.
Zurück zum Zitat Power M, Hosticka B, Black E, Daitch C, Norris P (2001) Aerogels as biosensors: viral particle detection by bacteria immobilized on large pore aerogel. J Non-Cryst Solids 285(1–3):303–308CrossRef Power M, Hosticka B, Black E, Daitch C, Norris P (2001) Aerogels as biosensors: viral particle detection by bacteria immobilized on large pore aerogel. J Non-Cryst Solids 285(1–3):303–308CrossRef
31.
Zurück zum Zitat Fang LX, Huang KJ, Liu Y (2015) Novel electrochemical dual-aptamer-based sandwich biosensor using molybdenum disulfide/carbon aerogel composites and Au nanoparticles for signal amplification. Biosens Bioelectron 71:171–178CrossRef Fang LX, Huang KJ, Liu Y (2015) Novel electrochemical dual-aptamer-based sandwich biosensor using molybdenum disulfide/carbon aerogel composites and Au nanoparticles for signal amplification. Biosens Bioelectron 71:171–178CrossRef
32.
Zurück zum Zitat Peng L, Dong SY, Li N, Suo GC, Huang TL (2015) Construction of a biocompatible system of hemoglobin based on AuNPs–carbon aerogel and ionic liquid for amperometric biosensor. Sens Actuat B Chem 210:418–424CrossRef Peng L, Dong SY, Li N, Suo GC, Huang TL (2015) Construction of a biocompatible system of hemoglobin based on AuNPs–carbon aerogel and ionic liquid for amperometric biosensor. Sens Actuat B Chem 210:418–424CrossRef
33.
Zurück zum Zitat Sun QQ, Xu MW, Bao SJ, Li CM (2015) pH-controllable synthesis of unique nanostructured tungsten oxide aerogel and its sensitive glucose biosensor. Nanotechnology 26(11):115602CrossRef Sun QQ, Xu MW, Bao SJ, Li CM (2015) pH-controllable synthesis of unique nanostructured tungsten oxide aerogel and its sensitive glucose biosensor. Nanotechnology 26(11):115602CrossRef
34.
Zurück zum Zitat Zhang Y, Nypelö T, Salas C, Arboleda J, Hoeger IC, Rojas OJ (2013) Cellulose nanofibrils. J Renew Mater 1(3):195–211CrossRef Zhang Y, Nypelö T, Salas C, Arboleda J, Hoeger IC, Rojas OJ (2013) Cellulose nanofibrils. J Renew Mater 1(3):195–211CrossRef
35.
Zurück zum Zitat Ren W, Cheng H-M (2013) Materials science: when two is better than one. Nature 497(7450):448–449CrossRef Ren W, Cheng H-M (2013) Materials science: when two is better than one. Nature 497(7450):448–449CrossRef
36.
Zurück zum Zitat Ul-Islam M, Khan S, Ullah MW, Park JK (2015) Bacterial cellulose composites: Synthetic strategies and multiple applications in bio-medical and electro-conductive fields. Biotechnol J 10(12):1847–1861CrossRef Ul-Islam M, Khan S, Ullah MW, Park JK (2015) Bacterial cellulose composites: Synthetic strategies and multiple applications in bio-medical and electro-conductive fields. Biotechnol J 10(12):1847–1861CrossRef
37.
Zurück zum Zitat Saboktakin A, Saboktakin MR (2015) Improvements of reinforced silica aerogel nanocomposites thermal properties for architecture applications. Int J Biol Macromol 72:230–234CrossRef Saboktakin A, Saboktakin MR (2015) Improvements of reinforced silica aerogel nanocomposites thermal properties for architecture applications. Int J Biol Macromol 72:230–234CrossRef
38.
Zurück zum Zitat Du A, Zhou B, Zhang ZH, Shen J (2013) A special material or a new state of matter: a review and reconsideration of the aerogel. Materials 6(3):941–968CrossRef Du A, Zhou B, Zhang ZH, Shen J (2013) A special material or a new state of matter: a review and reconsideration of the aerogel. Materials 6(3):941–968CrossRef
39.
Zurück zum Zitat Brinker CJ, Scherer GW (1990) Sol–gel science: the physics and chemistry of sol–gel processing. Academic Press, Boston Brinker CJ, Scherer GW (1990) Sol–gel science: the physics and chemistry of sol–gel processing. Academic Press, Boston
40.
Zurück zum Zitat Cuce E, Cuce PM, Wood CJ, Riffat SB (2014) Toward aerogel based thermal superinsulation in buildings: a comprehensive review. Renew Sustain Energ Rev 34:273–299CrossRef Cuce E, Cuce PM, Wood CJ, Riffat SB (2014) Toward aerogel based thermal superinsulation in buildings: a comprehensive review. Renew Sustain Energ Rev 34:273–299CrossRef
41.
Zurück zum Zitat Riffat SB, Qiu G (2013) A review of state-of-the-art aerogel applications in buildings. Int J Low Carbon Technol 8(1):1–6CrossRef Riffat SB, Qiu G (2013) A review of state-of-the-art aerogel applications in buildings. Int J Low Carbon Technol 8(1):1–6CrossRef
42.
Zurück zum Zitat Koebel M, Rigacci A, Achard P (2012) Aerogel-based thermal superinsulation: an overview. J Sol–Gel Sci Technol 63(3):315–339CrossRef Koebel M, Rigacci A, Achard P (2012) Aerogel-based thermal superinsulation: an overview. J Sol–Gel Sci Technol 63(3):315–339CrossRef
43.
Zurück zum Zitat Qi ZK, Huang DM, He S, Yang H, Hu Y, Li LM, Zhang HP (2013) Thermal protective performance of aerogel embedded firefighter’s protective clothing. J Eng Fibers Fabr 8(2):134–139 Qi ZK, Huang DM, He S, Yang H, Hu Y, Li LM, Zhang HP (2013) Thermal protective performance of aerogel embedded firefighter’s protective clothing. J Eng Fibers Fabr 8(2):134–139
44.
Zurück zum Zitat Shaid A, Furgusson M, Wang L (2014) Thermophysiological comfort analysis of aerogel nanoparticle incorporated fabric for fire fighter’s protective clothing. Chem Mater Eng 2(2):37–43 Shaid A, Furgusson M, Wang L (2014) Thermophysiological comfort analysis of aerogel nanoparticle incorporated fabric for fire fighter’s protective clothing. Chem Mater Eng 2(2):37–43
45.
Zurück zum Zitat Hair LM, Pekala RW, Stone RE, Chen C, Buckley SR (1988) Low-density resorcinol formaldehyde aerogels for direct-drive laser inertial confinement fusion-targets. J Vac Sci Technol A 6(4):2559–2563CrossRef Hair LM, Pekala RW, Stone RE, Chen C, Buckley SR (1988) Low-density resorcinol formaldehyde aerogels for direct-drive laser inertial confinement fusion-targets. J Vac Sci Technol A 6(4):2559–2563CrossRef
46.
Zurück zum Zitat Li N, Zhang Q, Liu J, Joo J, Lee A, Gan Y, Yin Y (2013) Sol–gel coating of inorganic nanostructures with resorcinol–formaldehyde resin. Chem Commun (Camb) 49(45):5135–5137CrossRef Li N, Zhang Q, Liu J, Joo J, Lee A, Gan Y, Yin Y (2013) Sol–gel coating of inorganic nanostructures with resorcinol–formaldehyde resin. Chem Commun (Camb) 49(45):5135–5137CrossRef
47.
Zurück zum Zitat Mulik S, Sotiriou-Leventis C (2011) Resorcinol–formaldehyde aerogels. In: Aegerter MA, Leventis N, Koebel MM (eds) Aerogels handbook. Advances in sol–gel derived materials and technologies. Springer, New York, pp 215–234 Mulik S, Sotiriou-Leventis C (2011) Resorcinol–formaldehyde aerogels. In: Aegerter MA, Leventis N, Koebel MM (eds) Aerogels handbook. Advances in sol–gel derived materials and technologies. Springer, New York, pp 215–234
48.
Zurück zum Zitat Welsch F (2008) Routes and modes of administration of resorcinol and their relationship to potential manifestations of thyroid gland toxicity in animals and man. Int J Toxicol 27(1):59–63CrossRef Welsch F (2008) Routes and modes of administration of resorcinol and their relationship to potential manifestations of thyroid gland toxicity in animals and man. Int J Toxicol 27(1):59–63CrossRef
49.
Zurück zum Zitat Welsch F, Nemec MD, Lawrence WB (2008) Two-generation reproductive toxicity study of resorcinol administered via drinking water to Crl:CD(SD) Rats. Int J Toxicol 27(1):43–57CrossRef Welsch F, Nemec MD, Lawrence WB (2008) Two-generation reproductive toxicity study of resorcinol administered via drinking water to Crl:CD(SD) Rats. Int J Toxicol 27(1):43–57CrossRef
50.
Zurück zum Zitat Wang XL, Ben Ahmed N, Alvarez GS, Tuttolomondo MV, Helary C, Desimone MF, Coradin T (2015) Sol–gel encapsulation of biomolecules and cells for medicinal applications. Curr Top Med Chem 15(3):223–244CrossRef Wang XL, Ben Ahmed N, Alvarez GS, Tuttolomondo MV, Helary C, Desimone MF, Coradin T (2015) Sol–gel encapsulation of biomolecules and cells for medicinal applications. Curr Top Med Chem 15(3):223–244CrossRef
51.
Zurück zum Zitat Li G, Zhu T, Deng Z, Zhang Y, Jiao F, Zheng H (2011) Preparation of Cu–SiO2 composite aerogel by ambient drying and the influence of synthesizing conditions on the structure of the aerogel. Chin Sci Bull 56(7):685–690CrossRef Li G, Zhu T, Deng Z, Zhang Y, Jiao F, Zheng H (2011) Preparation of Cu–SiO2 composite aerogel by ambient drying and the influence of synthesizing conditions on the structure of the aerogel. Chin Sci Bull 56(7):685–690CrossRef
52.
Zurück zum Zitat Hair LM, Coronado PR, Reynolds JG (2000) Mixed-metal oxide aerogels for oxidation of volatile organic compounds. J Non-Cryst Solids 270(1–3):115–122CrossRef Hair LM, Coronado PR, Reynolds JG (2000) Mixed-metal oxide aerogels for oxidation of volatile organic compounds. J Non-Cryst Solids 270(1–3):115–122CrossRef
53.
Zurück zum Zitat Giray S, Bal T, Kartal AM, Kizilel S, Erkey C (2012) Controlled drug delivery through a novel PEG hydrogel encapsulated silica aerogel system. J Biomed Mater Res A 100(5):1307–1315CrossRef Giray S, Bal T, Kartal AM, Kizilel S, Erkey C (2012) Controlled drug delivery through a novel PEG hydrogel encapsulated silica aerogel system. J Biomed Mater Res A 100(5):1307–1315CrossRef
54.
Zurück zum Zitat Buisson P, Hernandez C, Pierre M, Pierre AC (2001) Encapsulation of lipases in aerogels. J Non-Cryst Solids 285(1–3):295–302CrossRef Buisson P, Hernandez C, Pierre M, Pierre AC (2001) Encapsulation of lipases in aerogels. J Non-Cryst Solids 285(1–3):295–302CrossRef
55.
Zurück zum Zitat Guenther U, Smirnova I, Neubert RHH (2008) Hydrophilic silica aerogels as dermal drug delivery systems—dithranol as a model drug. Eur J Pharm Biopharm 69(3):935–942CrossRef Guenther U, Smirnova I, Neubert RHH (2008) Hydrophilic silica aerogels as dermal drug delivery systems—dithranol as a model drug. Eur J Pharm Biopharm 69(3):935–942CrossRef
56.
Zurück zum Zitat Mehling T, Smirnova I, Guenther U, Neubert RHH (2009) Polysaccharide-based aerogels as drug carriers. J Non-Cryst Solids 355(50–51):2472–2479CrossRef Mehling T, Smirnova I, Guenther U, Neubert RHH (2009) Polysaccharide-based aerogels as drug carriers. J Non-Cryst Solids 355(50–51):2472–2479CrossRef
57.
Zurück zum Zitat Zhao S, Manic MS, Ruiz-Gonzalez F, Koebel MM (2015) Aerogels. In: Levy D, Zayat M (eds) The sol–gel handbook: synthesis, characterization and applications, 3-volume set. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, pp 519–574CrossRef Zhao S, Manic MS, Ruiz-Gonzalez F, Koebel MM (2015) Aerogels. In: Levy D, Zayat M (eds) The sol–gel handbook: synthesis, characterization and applications, 3-volume set. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, pp 519–574CrossRef
58.
Zurück zum Zitat Smirnova I (2011) Pharmaceutical applications of aerogels. In: Aegerter MA, Leventis N, Koebel MM (eds) Aerogels handbook. Advances in sol–gel derived materials and technologies. Springer, New York, pp 695–717 Smirnova I (2011) Pharmaceutical applications of aerogels. In: Aegerter MA, Leventis N, Koebel MM (eds) Aerogels handbook. Advances in sol–gel derived materials and technologies. Springer, New York, pp 695–717
59.
Zurück zum Zitat Smirnova I, Suttiruengwong S, Arlt W (2004) Feasibility study of hydrophilic and hydrophobic silica aerogels as drug delivery systems. J Non-Cryst Solids 350:54–60CrossRef Smirnova I, Suttiruengwong S, Arlt W (2004) Feasibility study of hydrophilic and hydrophobic silica aerogels as drug delivery systems. J Non-Cryst Solids 350:54–60CrossRef
60.
Zurück zum Zitat Horikawa T, Hayashi J, Muroyama K (2004) Size control and characterization of spherical carbon aerogel particles from resorcinol–formaldehyde resin. Carbon 42(1):169–175CrossRef Horikawa T, Hayashi J, Muroyama K (2004) Size control and characterization of spherical carbon aerogel particles from resorcinol–formaldehyde resin. Carbon 42(1):169–175CrossRef
61.
Zurück zum Zitat Nishinari K, Takahashi R (2003) Interaction in polysaccharide solutions and gels. Curr Opin Colloid Interface 8(4–5):396–400CrossRef Nishinari K, Takahashi R (2003) Interaction in polysaccharide solutions and gels. Curr Opin Colloid Interface 8(4–5):396–400CrossRef
62.
Zurück zum Zitat Malafaya PB, Silva GA, Reis RL (2007) Natural-origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications. Adv Drug Deliv Rev 59(4–5):207–233CrossRef Malafaya PB, Silva GA, Reis RL (2007) Natural-origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications. Adv Drug Deliv Rev 59(4–5):207–233CrossRef
63.
Zurück zum Zitat Su C-W, Chen S-Y, Liu D-M (2013) ***Polysaccharide-lecithin reverse micelles with enzyme-degradable triglyceride shell for overcoming tumor multidrug resistance. Chem Commun 49(36):3772–3774CrossRef Su C-W, Chen S-Y, Liu D-M (2013) ***Polysaccharide-lecithin reverse micelles with enzyme-degradable triglyceride shell for overcoming tumor multidrug resistance. Chem Commun 49(36):3772–3774CrossRef
64.
Zurück zum Zitat Kamath KR, Park K (1993) Biodegradable hydrogels in drug delivery. Adv Drug Deliv Rev 11(1–2):59–84CrossRef Kamath KR, Park K (1993) Biodegradable hydrogels in drug delivery. Adv Drug Deliv Rev 11(1–2):59–84CrossRef
65.
Zurück zum Zitat Valo H, Arola S, Laaksonen P, Torkkeli M, Peltonen L, Linder MB, Serimaa R, Kuga S, Hirvonen J, Laaksonen T (2013) Drug release from nanoparticles embedded in four different nanofibrillar cellulose aerogels. Eur J Pharm Sci 50(1):69–77CrossRef Valo H, Arola S, Laaksonen P, Torkkeli M, Peltonen L, Linder MB, Serimaa R, Kuga S, Hirvonen J, Laaksonen T (2013) Drug release from nanoparticles embedded in four different nanofibrillar cellulose aerogels. Eur J Pharm Sci 50(1):69–77CrossRef
66.
Zurück zum Zitat Chang XH, Chen DR, Jiao XL (2008) Chitosan-based aerogels with high adsorption performance. J Phys Chem B 112(26):7721–7725CrossRef Chang XH, Chen DR, Jiao XL (2008) Chitosan-based aerogels with high adsorption performance. J Phys Chem B 112(26):7721–7725CrossRef
67.
Zurück zum Zitat Weiser JR, Saltzman WM (2014) Controlled release for local delivery of drugs: barriers and models. J Control Release 190:664–673CrossRef Weiser JR, Saltzman WM (2014) Controlled release for local delivery of drugs: barriers and models. J Control Release 190:664–673CrossRef
68.
Zurück zum Zitat Reed S, Wu B (2014) Sustained growth factor delivery in tissue engineering applications. Ann Biomed Eng 42(7):1528–1536CrossRef Reed S, Wu B (2014) Sustained growth factor delivery in tissue engineering applications. Ann Biomed Eng 42(7):1528–1536CrossRef
69.
Zurück zum Zitat Maver T, Hribernik S, Mohan T, Smrke DM, Maver U, Stana-Kleinschek K (2015) Functional wound dressing materials with highly tunable drug release properties. RSC Adv 5(95):77873–77884CrossRef Maver T, Hribernik S, Mohan T, Smrke DM, Maver U, Stana-Kleinschek K (2015) Functional wound dressing materials with highly tunable drug release properties. RSC Adv 5(95):77873–77884CrossRef
70.
Zurück zum Zitat Lee WL, Shi WX, Low ZY, Li SZ, Loo SCJ (2012) Modeling of drug release from biodegradable triple-layered microparticles. J Biomed Mater Res A 100A(12):3353–3362CrossRef Lee WL, Shi WX, Low ZY, Li SZ, Loo SCJ (2012) Modeling of drug release from biodegradable triple-layered microparticles. J Biomed Mater Res A 100A(12):3353–3362CrossRef
71.
Zurück zum Zitat Delfour MC (2012) Drug release kinetics from biodegradable polymers via partial differential equations models. Acta Appl Math 118(1):161–183CrossRef Delfour MC (2012) Drug release kinetics from biodegradable polymers via partial differential equations models. Acta Appl Math 118(1):161–183CrossRef
72.
Zurück zum Zitat Lao LL, Peppas NA, Boey FYC, Venkatraman SS (2011) Modeling of drug release from bulk-degrading polymers. Int J Pharm 418(1):28–41CrossRef Lao LL, Peppas NA, Boey FYC, Venkatraman SS (2011) Modeling of drug release from bulk-degrading polymers. Int J Pharm 418(1):28–41CrossRef
73.
Zurück zum Zitat Maver U, Godec A, Bele M, Planinšek O, Gaberšček M, Srčič S, Jamnik J (2007) Novel hybrid silica xerogels for stabilization and controlled release of drug. Int J Pharm 330(1–2):164–174CrossRef Maver U, Godec A, Bele M, Planinšek O, Gaberšček M, Srčič S, Jamnik J (2007) Novel hybrid silica xerogels for stabilization and controlled release of drug. Int J Pharm 330(1–2):164–174CrossRef
74.
Zurück zum Zitat Maver T, Kurečič M, Smrke DM, Kleinschek KS, Maver U (2015) Electrospun nanofibrous CMC/PEO as a part of an effective pain-relieving wound dressing. J Sol–Gel Sci Technol. doi:10.1007/s10971-015-3888-9 Maver T, Kurečič M, Smrke DM, Kleinschek KS, Maver U (2015) Electrospun nanofibrous CMC/PEO as a part of an effective pain-relieving wound dressing. J Sol–Gel Sci Technol. doi:10.​1007/​s10971-015-3888-9
75.
Zurück zum Zitat García-González CA, Uy JJ, Alnaief M, Smirnova I (2012) Preparation of tailor-made starch-based aerogel microspheres by the emulsion–gelation method. Carbohyd Polym 88(4):1378–1386CrossRef García-González CA, Uy JJ, Alnaief M, Smirnova I (2012) Preparation of tailor-made starch-based aerogel microspheres by the emulsion–gelation method. Carbohyd Polym 88(4):1378–1386CrossRef
76.
Zurück zum Zitat Alnaief M, Antonyuk S, Hentzschel CM, Leopold CS, Heinrich S, Smirnova I (2012) A novel process for coating of silica aerogel microspheres for controlled drug release applications. Microporous Mesoporous Mater 160:167–173CrossRef Alnaief M, Antonyuk S, Hentzschel CM, Leopold CS, Heinrich S, Smirnova I (2012) A novel process for coating of silica aerogel microspheres for controlled drug release applications. Microporous Mesoporous Mater 160:167–173CrossRef
77.
Zurück zum Zitat Colilla M, Baeza A, Vallet-Regí M (2015) Mesoporous silica nanoparticles for drug delivery and controlled release applications. In: Levy D, Zayat M (eds) The sol–gel handbook: synthesis, characterization and applications, 3-volume set. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, pp 1309–1344CrossRef Colilla M, Baeza A, Vallet-Regí M (2015) Mesoporous silica nanoparticles for drug delivery and controlled release applications. In: Levy D, Zayat M (eds) The sol–gel handbook: synthesis, characterization and applications, 3-volume set. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, pp 1309–1344CrossRef
78.
Zurück zum Zitat Maleki H, Durães L, Portugal A (2014) An overview on silica aerogels synthesis and different mechanical reinforcing strategies. J Non-Cryst Solids 385:55–74CrossRef Maleki H, Durães L, Portugal A (2014) An overview on silica aerogels synthesis and different mechanical reinforcing strategies. J Non-Cryst Solids 385:55–74CrossRef
79.
Zurück zum Zitat Rosenholm JM, Linden M (2008) Towards establishing structure–activity relationships for mesoporous silica in drug delivery applications. J Control Release 128(2):157–164CrossRef Rosenholm JM, Linden M (2008) Towards establishing structure–activity relationships for mesoporous silica in drug delivery applications. J Control Release 128(2):157–164CrossRef
80.
Zurück zum Zitat Smirnova I, Suttiruengwong S, Seiler M, Arlt W (2004) Dissolution rate enhancement by adsorption of poorly soluble drugs on hydrophilic silica aerogels. Pharm Dev Technol 9(4):443–452CrossRef Smirnova I, Suttiruengwong S, Seiler M, Arlt W (2004) Dissolution rate enhancement by adsorption of poorly soluble drugs on hydrophilic silica aerogels. Pharm Dev Technol 9(4):443–452CrossRef
81.
Zurück zum Zitat Murillo-Cremaes N, Lopez-Periago AM, Saurina J, Roig A, Domingo C (2013) Nanostructured silica-based drug delivery vehicles for hydrophobic and moisture sensitive drugs. J Supercrit Fluid 73:34–42CrossRef Murillo-Cremaes N, Lopez-Periago AM, Saurina J, Roig A, Domingo C (2013) Nanostructured silica-based drug delivery vehicles for hydrophobic and moisture sensitive drugs. J Supercrit Fluid 73:34–42CrossRef
82.
Zurück zum Zitat Caputo G (2013) Fixed bed adsorption of drugs on silica aerogel from supercritical carbon dioxide solutions. Int J Chem Eng 2013:7CrossRef Caputo G (2013) Fixed bed adsorption of drugs on silica aerogel from supercritical carbon dioxide solutions. Int J Chem Eng 2013:7CrossRef
83.
Zurück zum Zitat Schwertfeger F, Zimmermann A, Krempel H (2001) Use of inorganic aerogels in pharmacy. Google Patents Schwertfeger F, Zimmermann A, Krempel H (2001) Use of inorganic aerogels in pharmacy. Google Patents
84.
Zurück zum Zitat Godec A, Maver U, Bele M, Planinsek O, Srcic S, Gaberscek M, Jamnik J (2007) Vitrification from solution in restricted space: formation and stabilization of amorphous nifedipine in a nanoporous silica xerogel carrier. Int J Pharm 343(1–2):131–140CrossRef Godec A, Maver U, Bele M, Planinsek O, Srcic S, Gaberscek M, Jamnik J (2007) Vitrification from solution in restricted space: formation and stabilization of amorphous nifedipine in a nanoporous silica xerogel carrier. Int J Pharm 343(1–2):131–140CrossRef
85.
Zurück zum Zitat Berg A, Droege MW, Fellmann JD, Klaveness J, Rongved P (1996) Medical use of organic aerogels and biodegradable organic aerogels. Google Patents Berg A, Droege MW, Fellmann JD, Klaveness J, Rongved P (1996) Medical use of organic aerogels and biodegradable organic aerogels. Google Patents
86.
Zurück zum Zitat Lee KP, Gould GL (2006) Aerogel powder therapeutic agents. Google Patents Lee KP, Gould GL (2006) Aerogel powder therapeutic agents. Google Patents
87.
Zurück zum Zitat Marin MA, Mallepally RR, McHugh MA (2014) Silk fibroin aerogels for drug delivery applications. J Supercrit Fluids 91:84–89CrossRef Marin MA, Mallepally RR, McHugh MA (2014) Silk fibroin aerogels for drug delivery applications. J Supercrit Fluids 91:84–89CrossRef
88.
Zurück zum Zitat Betz M, Garcia-Gonzalez CA, Subrahmanyam RP, Smirnova I, Kulozik U (2012) Preparation of novel whey protein-based aerogels as drug carriers for life science applications. J Supercrit Fluid 72:111–119CrossRef Betz M, Garcia-Gonzalez CA, Subrahmanyam RP, Smirnova I, Kulozik U (2012) Preparation of novel whey protein-based aerogels as drug carriers for life science applications. J Supercrit Fluid 72:111–119CrossRef
89.
Zurück zum Zitat Chiang C-Y, Chu C-C (2015) Synthesis of photoresponsive hybrid alginate hydrogel with photo-controlled release behavior. Carbohyd Polym 119:18–25CrossRef Chiang C-Y, Chu C-C (2015) Synthesis of photoresponsive hybrid alginate hydrogel with photo-controlled release behavior. Carbohyd Polym 119:18–25CrossRef
90.
Zurück zum Zitat Abd El-Ghaffar MA, Hashem MS, El-Awady MK, Rabie AM (2012) pH-sensitive sodium alginate hydrogels for riboflavin controlled release. Carbohyd Polym 89(2):667–675CrossRef Abd El-Ghaffar MA, Hashem MS, El-Awady MK, Rabie AM (2012) pH-sensitive sodium alginate hydrogels for riboflavin controlled release. Carbohyd Polym 89(2):667–675CrossRef
91.
Zurück zum Zitat Gombotz WR, Wee SF (2012) Protein release from alginate matrices. Adv Drug Deliv Rev 64(Supplement):194–205CrossRef Gombotz WR, Wee SF (2012) Protein release from alginate matrices. Adv Drug Deliv Rev 64(Supplement):194–205CrossRef
92.
Zurück zum Zitat Garcia-Gonzalez CA, Smirnova I (2013) Use of supercritical fluid technology for the production of tailor-made aerogel particles for delivery systems. J Supercrit Fluid 79:152–158CrossRef Garcia-Gonzalez CA, Smirnova I (2013) Use of supercritical fluid technology for the production of tailor-made aerogel particles for delivery systems. J Supercrit Fluid 79:152–158CrossRef
93.
Zurück zum Zitat Giray S, Bal T, Kartal AM, Kızılel S, Erkey C (2012) Controlled drug delivery through a novel PEG hydrogel encapsulated silica aerogel system. J Biomed Mater Res A 100A(5):1307–1315CrossRef Giray S, Bal T, Kartal AM, Kızılel S, Erkey C (2012) Controlled drug delivery through a novel PEG hydrogel encapsulated silica aerogel system. J Biomed Mater Res A 100A(5):1307–1315CrossRef
94.
Zurück zum Zitat Wang X, Jana SC (2013) Synergistic hybrid organic–inorganic aerogels. ACS Appl Mater Interfaces 5(13):6423–6429CrossRef Wang X, Jana SC (2013) Synergistic hybrid organic–inorganic aerogels. ACS Appl Mater Interfaces 5(13):6423–6429CrossRef
95.
Zurück zum Zitat Ree M, Goh WH, Kim Y (1995) Thin films of organic polymer composites with inorganic aerogels as dielectric materials: polymer chain orientation and properties. Polym Bull 35(1–2):215–222CrossRef Ree M, Goh WH, Kim Y (1995) Thin films of organic polymer composites with inorganic aerogels as dielectric materials: polymer chain orientation and properties. Polym Bull 35(1–2):215–222CrossRef
96.
Zurück zum Zitat Sanli D, Ulker Z, Giray S, Kızılel S, Erkey C (2011) PEG-hydrogel coated silica aerogels: a novel drug delivery system. Paper presented at the 13th European meeting on supercritical fluids, The Hague, Netherlands Sanli D, Ulker Z, Giray S, Kızılel S, Erkey C (2011) PEG-hydrogel coated silica aerogels: a novel drug delivery system. Paper presented at the 13th European meeting on supercritical fluids, The Hague, Netherlands
97.
Zurück zum Zitat Ulker Z, Erkey C (2014) A novel hybrid material: an inorganic silica aerogel core encapsulated with a tunable organic alginate aerogel layer. RSC Adv 4(107):62362–62366CrossRef Ulker Z, Erkey C (2014) A novel hybrid material: an inorganic silica aerogel core encapsulated with a tunable organic alginate aerogel layer. RSC Adv 4(107):62362–62366CrossRef
98.
Zurück zum Zitat Holland SJ, Tighe BJ, Gould PL (1986) Polymers for biodegradable medical devices. 1. The potential of polyesters as controlled macromolecular release systems. J Control Release 4(3):155–180CrossRef Holland SJ, Tighe BJ, Gould PL (1986) Polymers for biodegradable medical devices. 1. The potential of polyesters as controlled macromolecular release systems. J Control Release 4(3):155–180CrossRef
99.
Zurück zum Zitat Venkatraman S, Boey F, Lao LL (2008) Implanted cardiovascular polymers: natural, synthetic and bio-inspired. Prog Polym Sci 33(9):853–874CrossRef Venkatraman S, Boey F, Lao LL (2008) Implanted cardiovascular polymers: natural, synthetic and bio-inspired. Prog Polym Sci 33(9):853–874CrossRef
100.
Zurück zum Zitat Claiborne TE, Slepian MJ, Hossainy S, Bluestein D (2012) Polymeric trileaflet prosthetic heart valves: evolution and path to clinical reality. Expert Rev Med Dev 9(6):577–594CrossRef Claiborne TE, Slepian MJ, Hossainy S, Bluestein D (2012) Polymeric trileaflet prosthetic heart valves: evolution and path to clinical reality. Expert Rev Med Dev 9(6):577–594CrossRef
101.
Zurück zum Zitat Yang WW, Pierstorff E (2012) Reservoir-based polymer drug delivery systems. J Lab Autom 17(1):50–58CrossRef Yang WW, Pierstorff E (2012) Reservoir-based polymer drug delivery systems. J Lab Autom 17(1):50–58CrossRef
102.
Zurück zum Zitat Smith IO, Liu XH, Smith LA, Ma PX (2009) Nanostructured polymer scaffolds for tissue engineering and regenerative medicine. Wiley Interdiscip Rev Nanomed Nanobiotechnol 1(2):226–236CrossRef Smith IO, Liu XH, Smith LA, Ma PX (2009) Nanostructured polymer scaffolds for tissue engineering and regenerative medicine. Wiley Interdiscip Rev Nanomed Nanobiotechnol 1(2):226–236CrossRef
103.
Zurück zum Zitat Dhandayuthapani B, Yoshida Y, Maekawa T, Kumar S (2011) Polymeric scaffolds in tissue engineering application: a review. Int J Polym Sci 2011:19CrossRef Dhandayuthapani B, Yoshida Y, Maekawa T, Kumar S (2011) Polymeric scaffolds in tissue engineering application: a review. Int J Polym Sci 2011:19CrossRef
104.
Zurück zum Zitat Mogosanu GD, Grumezescu AM (2014) Natural and synthetic polymers for wounds and burns dressing. Int J Pharm 463(2):127–136CrossRef Mogosanu GD, Grumezescu AM (2014) Natural and synthetic polymers for wounds and burns dressing. Int J Pharm 463(2):127–136CrossRef
105.
Zurück zum Zitat Agrawal P, Soni S, Mittal G, Bhatnagar A (2014) Role of polymeric biomaterials as wound healing agents. Int J Lower Extrem Wounds 13(3):180–190CrossRef Agrawal P, Soni S, Mittal G, Bhatnagar A (2014) Role of polymeric biomaterials as wound healing agents. Int J Lower Extrem Wounds 13(3):180–190CrossRef
106.
Zurück zum Zitat Jones JR (2015) Sol–gel materials for biomedical applications. In: Levy D, Zayat M (eds) The sol–gel handbook: synthesis, characterization and applications, 3-volume set. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, pp 1345–1370CrossRef Jones JR (2015) Sol–gel materials for biomedical applications. In: Levy D, Zayat M (eds) The sol–gel handbook: synthesis, characterization and applications, 3-volume set. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, pp 1345–1370CrossRef
107.
Zurück zum Zitat Lee H, Homma A, Tatsumi E, Taenaka Y (2010) Observation of cavitation pits on mechanical heart valve surfaces in an artificial heart used in in vitro testing. J Artif Organs 13(1):17–23CrossRef Lee H, Homma A, Tatsumi E, Taenaka Y (2010) Observation of cavitation pits on mechanical heart valve surfaces in an artificial heart used in in vitro testing. J Artif Organs 13(1):17–23CrossRef
108.
Zurück zum Zitat Claiborne TE, Bluestein D, Schoephoerster RT (2009) Development and evaluation of a novel artificial catheter-deliverable prosthetic heart valve and method for in vitro testing. Int J Artif Organs 32(5):262–271 Claiborne TE, Bluestein D, Schoephoerster RT (2009) Development and evaluation of a novel artificial catheter-deliverable prosthetic heart valve and method for in vitro testing. Int J Artif Organs 32(5):262–271
109.
Zurück zum Zitat Yin W, Venkitachalam SM, Jarrett E, Staggs S, Leventis N, Lu H, Rubenstein DA (2010) Biocompatibility of surfactant-templated polyurea-nanoencapsulated macroporous silica aerogels with plasma platelets and endothelial cells. J Biomed Mater Res A 92(4):1431–1439 Yin W, Venkitachalam SM, Jarrett E, Staggs S, Leventis N, Lu H, Rubenstein DA (2010) Biocompatibility of surfactant-templated polyurea-nanoencapsulated macroporous silica aerogels with plasma platelets and endothelial cells. J Biomed Mater Res A 92(4):1431–1439
110.
Zurück zum Zitat Toledo-Fernández J, Mendoza-Serna R, Morales V, de la Rosa-Fox N, Piñero M, Santos A, Esquivias L (2008) Bioactivity of wollastonite/aerogels composites obtained from a TEOS–MTES matrix. J Mater Sci Mater Med 19(5):2207–2213CrossRef Toledo-Fernández J, Mendoza-Serna R, Morales V, de la Rosa-Fox N, Piñero M, Santos A, Esquivias L (2008) Bioactivity of wollastonite/aerogels composites obtained from a TEOS–MTES matrix. J Mater Sci Mater Med 19(5):2207–2213CrossRef
111.
Zurück zum Zitat Ayers MR, Hunt AJ (2001) Synthesis and properties of chitosan-silica hybrid aerogels. J Non-Cryst Solids 285(1–3):123–127CrossRef Ayers MR, Hunt AJ (2001) Synthesis and properties of chitosan-silica hybrid aerogels. J Non-Cryst Solids 285(1–3):123–127CrossRef
112.
Zurück zum Zitat Cardea S, Pisanti P, Reverchon E (2010) Generation of chitosan nanoporous structures for tissue engineering applications using a supercritical fluid assisted process. J Supercrit Fluids 54(3):290–295CrossRef Cardea S, Pisanti P, Reverchon E (2010) Generation of chitosan nanoporous structures for tissue engineering applications using a supercritical fluid assisted process. J Supercrit Fluids 54(3):290–295CrossRef
113.
Zurück zum Zitat Aimé C, Coradin T, Fernandes FM (2015) Biomimetic sol–gel materials. In: Levy D, Zayat M (eds) The sol–gel handbook: synthesis, characterization and applications, 3-volume set. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, pp 605–650CrossRef Aimé C, Coradin T, Fernandes FM (2015) Biomimetic sol–gel materials. In: Levy D, Zayat M (eds) The sol–gel handbook: synthesis, characterization and applications, 3-volume set. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, pp 605–650CrossRef
114.
Zurück zum Zitat Nakanishi K (2015) Properties and applications of sol–gel materials: functionalized porous amorphous solids (monoliths). In: Levy D, Zayat M (eds) The sol–gel handbook: synthesis, characterization and applications, 3-volume set. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, pp 745–766CrossRef Nakanishi K (2015) Properties and applications of sol–gel materials: functionalized porous amorphous solids (monoliths). In: Levy D, Zayat M (eds) The sol–gel handbook: synthesis, characterization and applications, 3-volume set. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, pp 745–766CrossRef
115.
Zurück zum Zitat Ge J, Li M, Zhang Q, Yang CZ, Wooley PH, Chen X, Yang S-Y (2013) Silica aerogel improves the biocompatibility in a poly-caprolactone composite used as a tissue engineering scaffold. Int J Polym Sci 2013:7CrossRef Ge J, Li M, Zhang Q, Yang CZ, Wooley PH, Chen X, Yang S-Y (2013) Silica aerogel improves the biocompatibility in a poly-caprolactone composite used as a tissue engineering scaffold. Int J Polym Sci 2013:7CrossRef
116.
Zurück zum Zitat Jagur-Grodzinski J (2010) Polymeric gels and hydrogels for biomedical and pharmaceutical applications. Polym Adv Technol 21(1):27–47 Jagur-Grodzinski J (2010) Polymeric gels and hydrogels for biomedical and pharmaceutical applications. Polym Adv Technol 21(1):27–47
117.
Zurück zum Zitat Martins M, Barros AA, Quraishi S, Gurikov P, Raman SP, Smirnova I, Duarte ARC, Reis RL (2015) Preparation of macroporous alginate-based aerogels for biomedical applications. J Supercrit Fluids 106:152–159CrossRef Martins M, Barros AA, Quraishi S, Gurikov P, Raman SP, Smirnova I, Duarte ARC, Reis RL (2015) Preparation of macroporous alginate-based aerogels for biomedical applications. J Supercrit Fluids 106:152–159CrossRef
118.
Zurück zum Zitat Raman SP, Gurikov P, Smirnova I (2015) Hybrid alginate based aerogels by carbon dioxide induced gelation: novel technique for multiple applications. J Supercrit Fluids 106:23–33CrossRef Raman SP, Gurikov P, Smirnova I (2015) Hybrid alginate based aerogels by carbon dioxide induced gelation: novel technique for multiple applications. J Supercrit Fluids 106:23–33CrossRef
119.
Zurück zum Zitat Rocco P, Viggiano I, Schiraldi DA (2014) Fabrication and mechanical characterization of lignin-based aerogels. Green Mater 2(3):153–158CrossRef Rocco P, Viggiano I, Schiraldi DA (2014) Fabrication and mechanical characterization of lignin-based aerogels. Green Mater 2(3):153–158CrossRef
120.
Zurück zum Zitat Yu H, Wooley PH, Yang S-Y (2009) Biocompatibility of poly-ε-caprolactone–hydroxyapatite composite on mouse bone marrow-derived osteoblasts and endothelial cells. J Orthop Surg Res 4(1):1–9CrossRef Yu H, Wooley PH, Yang S-Y (2009) Biocompatibility of poly-ε-caprolactone–hydroxyapatite composite on mouse bone marrow-derived osteoblasts and endothelial cells. J Orthop Surg Res 4(1):1–9CrossRef
121.
Zurück zum Zitat Zhang YZ, Venugopal J, Huang ZM, Lim CT, Ramakrishna S (2005) Characterization of the surface biocompatibility of the electrospun PCL-collagen nanofibers using fibroblasts. Biomacromolecules 6(5):2583–2589CrossRef Zhang YZ, Venugopal J, Huang ZM, Lim CT, Ramakrishna S (2005) Characterization of the surface biocompatibility of the electrospun PCL-collagen nanofibers using fibroblasts. Biomacromolecules 6(5):2583–2589CrossRef
122.
Zurück zum Zitat Wu KJ, Wu CS, Chang JS (2007) Biodegradability and mechanical properties of polycaprolactone composites encapsulating phosphate-solubilizing bacterium Bacillus sp PG01. Process Biochem 42(4):669–675CrossRef Wu KJ, Wu CS, Chang JS (2007) Biodegradability and mechanical properties of polycaprolactone composites encapsulating phosphate-solubilizing bacterium Bacillus sp PG01. Process Biochem 42(4):669–675CrossRef
123.
Zurück zum Zitat Lu TH, Li Q, Chen WS, Yu HP (2014) Composite aerogels based on dialdehyde nanocellulose and collagen for potential applications as wound dressing and tissue engineering scaffold. Compos Sci Technol 94:132–138CrossRef Lu TH, Li Q, Chen WS, Yu HP (2014) Composite aerogels based on dialdehyde nanocellulose and collagen for potential applications as wound dressing and tissue engineering scaffold. Compos Sci Technol 94:132–138CrossRef
124.
Zurück zum Zitat Abdelrahman T, Newton H (2011) Wound dressings: principles and practice. Surgery (Oxford) 29(10):491–495CrossRef Abdelrahman T, Newton H (2011) Wound dressings: principles and practice. Surgery (Oxford) 29(10):491–495CrossRef
125.
Zurück zum Zitat Boyce ST, Warden GD (2002) Principles and practices for treatment of cutaneous wounds with cultured skin substitutes. Am J Surg 183(4):445–456CrossRef Boyce ST, Warden GD (2002) Principles and practices for treatment of cutaneous wounds with cultured skin substitutes. Am J Surg 183(4):445–456CrossRef
126.
Zurück zum Zitat Benbow M (2010) Managing wound pain: Is there an ‘ideal dressing’? Br J Nurs 19(20):1273–1274CrossRef Benbow M (2010) Managing wound pain: Is there an ‘ideal dressing’? Br J Nurs 19(20):1273–1274CrossRef
127.
Zurück zum Zitat Boateng JS, Matthews KH, Stevens HN, Eccleston GM (2008) Wound healing dressings and drug delivery systems: a review. J Pharm Sci 97(8):2892–2923CrossRef Boateng JS, Matthews KH, Stevens HN, Eccleston GM (2008) Wound healing dressings and drug delivery systems: a review. J Pharm Sci 97(8):2892–2923CrossRef
128.
Zurück zum Zitat Singh B, Sharma S, Dhiman A (2013) Design of antibiotic containing hydrogel wound dressings: biomedical properties and histological study of wound healing. Int J Pharm 457(1):82–91CrossRef Singh B, Sharma S, Dhiman A (2013) Design of antibiotic containing hydrogel wound dressings: biomedical properties and histological study of wound healing. Int J Pharm 457(1):82–91CrossRef
129.
Zurück zum Zitat Dreifke MB, Jayasuriya AA, Jayasuriya AC (2015) Current wound healing procedures and potential care. Mater Sci Eng C 48:651–662CrossRef Dreifke MB, Jayasuriya AA, Jayasuriya AC (2015) Current wound healing procedures and potential care. Mater Sci Eng C 48:651–662CrossRef
130.
Zurück zum Zitat Choi JS, Kim HS, Yoo HS (2015) Electrospinning strategies of drug-incorporated nanofibrous mats for wound recovery. Drug Deliv Transl Res 5(2):137–145CrossRef Choi JS, Kim HS, Yoo HS (2015) Electrospinning strategies of drug-incorporated nanofibrous mats for wound recovery. Drug Deliv Transl Res 5(2):137–145CrossRef
131.
Zurück zum Zitat Maver T, Maver U, Mostegel F, Grieser T, Spirk S, Smrke D, Stana Kleinschek K (2015) Cellulose based thin films as a platform for drug release studies to mimick wound dressing materials. Cellulose 22:749–761CrossRef Maver T, Maver U, Mostegel F, Grieser T, Spirk S, Smrke D, Stana Kleinschek K (2015) Cellulose based thin films as a platform for drug release studies to mimick wound dressing materials. Cellulose 22:749–761CrossRef
132.
Zurück zum Zitat Jayakumar R, Prabaharan M, Sudheesh Kumar PT, Nair SV, Tamura H (2011) Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnol Adv 29(3):322–337CrossRef Jayakumar R, Prabaharan M, Sudheesh Kumar PT, Nair SV, Tamura H (2011) Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnol Adv 29(3):322–337CrossRef
133.
Zurück zum Zitat Moritz S, Wiegand C, Wesarg F, Hessler N, Müller FA, Kralisch D, Hipler U-C, Fischer D (2014) Active wound dressings based on bacterial nanocellulose as drug delivery system for octenidine. Int J Pharm 471(1–2):45–55CrossRef Moritz S, Wiegand C, Wesarg F, Hessler N, Müller FA, Kralisch D, Hipler U-C, Fischer D (2014) Active wound dressings based on bacterial nanocellulose as drug delivery system for octenidine. Int J Pharm 471(1–2):45–55CrossRef
134.
Zurück zum Zitat Lin WC, Lien CC, Yeh HJ, Yu CM, Hsu SH (2013) Bacterial cellulose and bacterial cellulose–chitosan membranes for wound dressing applications. Carbohydr Polym 94(1):603–611CrossRef Lin WC, Lien CC, Yeh HJ, Yu CM, Hsu SH (2013) Bacterial cellulose and bacterial cellulose–chitosan membranes for wound dressing applications. Carbohydr Polym 94(1):603–611CrossRef
135.
Zurück zum Zitat Hrubesh LW, Pekala RW (1994) Dielectric properties and electronic applications of aerogels. In: Attia Y (ed) Sol–gel processing and applications. Springer, Berlin, pp 363–367CrossRef Hrubesh LW, Pekala RW (1994) Dielectric properties and electronic applications of aerogels. In: Attia Y (ed) Sol–gel processing and applications. Springer, Berlin, pp 363–367CrossRef
136.
Zurück zum Zitat Sinko K, Cser L, Mezei R, Avdeev M, Peterlik H, Trimmel G, Husing N, Fratzl P (2000) Structure investigation of intelligent aerogels. Phys B 276:392–393CrossRef Sinko K, Cser L, Mezei R, Avdeev M, Peterlik H, Trimmel G, Husing N, Fratzl P (2000) Structure investigation of intelligent aerogels. Phys B 276:392–393CrossRef
138.
Zurück zum Zitat Contolini RJ, Hrubesh LW, Bernhardt AF (1993) Aerogels for microelectronic applications: fast inexpensive, and light as air. Lawrence Livermore National Lab, Livermore Contolini RJ, Hrubesh LW, Bernhardt AF (1993) Aerogels for microelectronic applications: fast inexpensive, and light as air. Lawrence Livermore National Lab, Livermore
139.
Zurück zum Zitat Poelz G, Riethmuller R (1982) Preparation of silica aerogel for Cherenkov counters. Nucl Instrum Methods 195(3):491–503CrossRef Poelz G, Riethmuller R (1982) Preparation of silica aerogel for Cherenkov counters. Nucl Instrum Methods 195(3):491–503CrossRef
140.
Zurück zum Zitat Sallaz-Damaz Y, Derome L, Mangin-Brinet M, Loth M, Protasov K, Putze A, Vargas-Trevino M, Veziant O, Buenerd M, Menchaca-Rocha A, Belmont E, Vargas-Magana M, Leon-Vargas H, Ortiz-Velasquez A, Malinine A, Barao F, Pereira R, Bellunato T, Matteuzzi C, Perego DL (2010) Characterization study of silica aerogel for Cherenkov imaging. Nucl Instrum Meth A 614(2):184–195CrossRef Sallaz-Damaz Y, Derome L, Mangin-Brinet M, Loth M, Protasov K, Putze A, Vargas-Trevino M, Veziant O, Buenerd M, Menchaca-Rocha A, Belmont E, Vargas-Magana M, Leon-Vargas H, Ortiz-Velasquez A, Malinine A, Barao F, Pereira R, Bellunato T, Matteuzzi C, Perego DL (2010) Characterization study of silica aerogel for Cherenkov imaging. Nucl Instrum Meth A 614(2):184–195CrossRef
141.
Zurück zum Zitat Allkofer Y, Amsler C, Horikawa S, Johnson I, Regenfus C, Rochet J (2007) A novel aerogel Cherenkov detector for DIRAC-II. Nucl Instrum Methods A 582(2):497–508CrossRef Allkofer Y, Amsler C, Horikawa S, Johnson I, Regenfus C, Rochet J (2007) A novel aerogel Cherenkov detector for DIRAC-II. Nucl Instrum Methods A 582(2):497–508CrossRef
142.
Zurück zum Zitat Kharzheev YN (2008) Use of silica aerogels in Cherenkov counters. Phys Part Nucl 39(1):107–135CrossRef Kharzheev YN (2008) Use of silica aerogels in Cherenkov counters. Phys Part Nucl 39(1):107–135CrossRef
143.
Zurück zum Zitat Jensen KI, Schultz JM, Kristiansen FH (2004) Development of windows based on highly insulating aerogel glazings. J Non-Cryst Solids 350:351–357CrossRef Jensen KI, Schultz JM, Kristiansen FH (2004) Development of windows based on highly insulating aerogel glazings. J Non-Cryst Solids 350:351–357CrossRef
144.
Zurück zum Zitat Xie Y, Beamish J (1996) Ultrasonic velocity and attenuation in silica aerogels at low temperatures. Czech J Phys 46:2723–2724CrossRef Xie Y, Beamish J (1996) Ultrasonic velocity and attenuation in silica aerogels at low temperatures. Czech J Phys 46:2723–2724CrossRef
145.
Zurück zum Zitat Schlief T, Gross J, Fricke J (1992) Ultrasonic-attenuation in silica aerogels. J Non-Cryst Solids 145(1–3):223–226CrossRef Schlief T, Gross J, Fricke J (1992) Ultrasonic-attenuation in silica aerogels. J Non-Cryst Solids 145(1–3):223–226CrossRef
146.
Zurück zum Zitat Merzbacher CI, Meier SR, Pierce JR, Korwin ML (2001) Carbon aerogels as broadband non-reflective materials. J Non-Cryst Solids 285(1–3):210–215CrossRef Merzbacher CI, Meier SR, Pierce JR, Korwin ML (2001) Carbon aerogels as broadband non-reflective materials. J Non-Cryst Solids 285(1–3):210–215CrossRef
147.
Zurück zum Zitat Moreno-Castilla C, Maldonado-Hodar FJ (2005) Carbon aerogels for catalysis applications: an overview. Carbon 43(3):455–465CrossRef Moreno-Castilla C, Maldonado-Hodar FJ (2005) Carbon aerogels for catalysis applications: an overview. Carbon 43(3):455–465CrossRef
148.
Zurück zum Zitat Jones SM (2006) Aerogel: space exploration applications. J Sol–Gel Sci Technol 40(2–3):351–357CrossRef Jones SM (2006) Aerogel: space exploration applications. J Sol–Gel Sci Technol 40(2–3):351–357CrossRef
149.
Zurück zum Zitat Reynolds JG, Coronado PR, Hrubesh LW (2001) Hydrophobic aerogels for oil-spill cleanup—intrinsic absorbing properties. Energ Source 23(9):831–843CrossRef Reynolds JG, Coronado PR, Hrubesh LW (2001) Hydrophobic aerogels for oil-spill cleanup—intrinsic absorbing properties. Energ Source 23(9):831–843CrossRef
150.
Zurück zum Zitat Krainov VP, Smirnov MB (2002) Laser induced fusion in aerogel. Laser Phys 12(4):781–785 Krainov VP, Smirnov MB (2002) Laser induced fusion in aerogel. Laser Phys 12(4):781–785
151.
Zurück zum Zitat Krainov VP, Smirnov MB (2001) Nuclear fusion induced by a super-intense ultrashort laser pulse in a deuterated glass aerogel. J Exp Theor Phys 93(3):485–490CrossRef Krainov VP, Smirnov MB (2001) Nuclear fusion induced by a super-intense ultrashort laser pulse in a deuterated glass aerogel. J Exp Theor Phys 93(3):485–490CrossRef
152.
Zurück zum Zitat Cumana S, Ardao I, Zeng A-P, Smirnova I (2014) Glucose-6-phosphate dehydrogenase encapsulated in silica-based hydrogels for operation in a microreactor. Eng Life Sci 14(2):170–179CrossRef Cumana S, Ardao I, Zeng A-P, Smirnova I (2014) Glucose-6-phosphate dehydrogenase encapsulated in silica-based hydrogels for operation in a microreactor. Eng Life Sci 14(2):170–179CrossRef
Metadaten
Titel
Review of aerogel-based materials in biomedical applications
verfasst von
Janja Stergar
Uroš Maver
Publikationsdatum
01.03.2016
Verlag
Springer US
Erschienen in
Journal of Sol-Gel Science and Technology / Ausgabe 3/2016
Print ISSN: 0928-0707
Elektronische ISSN: 1573-4846
DOI
https://doi.org/10.1007/s10971-016-3968-5

Weitere Artikel der Ausgabe 3/2016

Journal of Sol-Gel Science and Technology 3/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.