Skip to main content
Erschienen in: Journal of Sol-Gel Science and Technology 2/2017

24.02.2017 | Original Paper: Devices based on sol-gel or hybrid materials

Synthesis and characterization of La0.595V0.005Sr0.4CoO3−δ as a novel cathode material for solid oxide fuel cells (SOFC)

verfasst von: Aysenur Eslem Kisa, Oktay Demircan

Erschienen in: Journal of Sol-Gel Science and Technology | Ausgabe 2/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The effect of vanadium doping on the crystal structure and on the electrical, electrochemical properties of La0.6−x V x Sr0.4CoO3−δ (x = 0.005–0.05) perovskite oxides performing as cathode materials in solid oxide fuel cells is investigated in this study. Crystal structure, surface morphology, and porosity of prepared cathode materials are characterized by X-ray diffraction, X-ray absorption fine structure, and scanning electron microscopy. For the first time, it has been proven by X-ray absorption fine structure that La3+ cation is replaced with V4+/5+ cation in perovskite structure. Since V4+/5+ cation has the radius almost half of the radius of La3+ cation, this replacement adds better properties to the perovskite structure such as ionic conductivity and catalytic activity for oxygen reduction reaction. The electrical conductivity at the intermediate temperatures (400–700 °C) appears to be enough to yield a better performance in intermediate temperature-solid oxide fuel cells applications. The sample with 0.05% V4+/5+ doping exhibits its maximum electronic conductivity (σ = 843 S.cm−1 at 400 °C) and minimum activation energy (Ea = 0.049 eV). The La0.595V0.005Sr0.4CoO3 material as electrode for symmetric cell configuration was prepared on both surfaces of yttria-stabilized zirconia substrates. Oxygen concentration related polarization experiment suggests that the oxygen adsorption–desorption process or reactions controlled by the atomic oxygen diffusion process followed by a charge transfer are the cathode reaction rate-limiting steps.

Graphical Abstract

V4+/5+ ion doped LVxSC (La0.6-xVxSr0.4CoO3−δ x = 0.005-0.05) cathode materials for intermediate temperature-solid oxide fuel cells (IT-SOFC) are synthesized for the first time by sol-gel method. LV05SC cathode with good electro-catalytic activity for ORR can be considered as a potential cathode material for IT-SOFC applications. https://static-content.springer.com/image/art%3A10.1007%2Fs10971-017-4334-y/MediaObjects/10971_2017_4334_Figa_HTML.gif

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
2.
Zurück zum Zitat Singhal SC, Kendall K (2003) High temperature solid oxide fuel cells: fundamentals. In: Singhal SC, Kendall K (eds) Design and applications. Elsevier, Oxford, pp 1–23 Singhal SC, Kendall K (2003) High temperature solid oxide fuel cells: fundamentals. In: Singhal SC, Kendall K (eds) Design and applications. Elsevier, Oxford, pp 1–23
3.
Zurück zum Zitat Stambouli AB, Traversa E (2002) Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy. Renew Sust En Rev 6:433–455CrossRef Stambouli AB, Traversa E (2002) Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy. Renew Sust En Rev 6:433–455CrossRef
4.
Zurück zum Zitat Lashtabeg A, Skinner SJ (2006) Solid oxide fuel cells-a challenge for materials chemists? J Mater Chem 16:3161–3170CrossRef Lashtabeg A, Skinner SJ (2006) Solid oxide fuel cells-a challenge for materials chemists? J Mater Chem 16:3161–3170CrossRef
5.
Zurück zum Zitat Wachsman ED, Lee KT (2011) Lowering the temperature of solid oxide fuel cells. Science 334:935–939CrossRef Wachsman ED, Lee KT (2011) Lowering the temperature of solid oxide fuel cells. Science 334:935–939CrossRef
6.
Zurück zum Zitat Brett DJL, Atkinson A, Brandon NP et al. (2008) Intermediate temperature solid oxide fuel cells. Chem Soc Rev 37:1568–1578CrossRef Brett DJL, Atkinson A, Brandon NP et al. (2008) Intermediate temperature solid oxide fuel cells. Chem Soc Rev 37:1568–1578CrossRef
7.
Zurück zum Zitat Jacobson AJ (2010) Materials for solid oxide fuel cells. Chem Mater 22:660–674CrossRef Jacobson AJ (2010) Materials for solid oxide fuel cells. Chem Mater 22:660–674CrossRef
8.
Zurück zum Zitat Minh NQ, Takahashi T (1995) Science and technology of ceramic fuel cells. Elsevier, Amsterdam, pp 117–146CrossRef Minh NQ, Takahashi T (1995) Science and technology of ceramic fuel cells. Elsevier, Amsterdam, pp 117–146CrossRef
9.
Zurück zum Zitat Istomin SY, Antipov EV (2013) Cathode materials based on perovskite-like transition metal oxides for intermediate temperature solid oxide fuel cells. Rus Chem Rev 82:686–700CrossRef Istomin SY, Antipov EV (2013) Cathode materials based on perovskite-like transition metal oxides for intermediate temperature solid oxide fuel cells. Rus Chem Rev 82:686–700CrossRef
10.
Zurück zum Zitat Jiang SP (2008) Development of lanthanum strontium manganite perovskite cathode materials of solid oxide fuel cells: a review. J Mater Sci 43:6799–6833CrossRef Jiang SP (2008) Development of lanthanum strontium manganite perovskite cathode materials of solid oxide fuel cells: a review. J Mater Sci 43:6799–6833CrossRef
11.
Zurück zum Zitat Tiffee EI, Weber A, Herbstritt D (2001) Materials and technologies for SOFC components. J Eur Cer Soc 21:1805–1811CrossRef Tiffee EI, Weber A, Herbstritt D (2001) Materials and technologies for SOFC components. J Eur Cer Soc 21:1805–1811CrossRef
12.
Zurück zum Zitat Wei F, Cao H, Chen X (2016) La0.6Sr0.4CoO3−δ–Ce0.8Gd0.2O2−δ nanocomposites prepared by a sol–gel process for intermediate temperature solid oxide fuel cell cathode applications. J Mater Sci 51:2160–2167CrossRef Wei F, Cao H, Chen X (2016) La0.6Sr0.4CoO3−δ–Ce0.8Gd0.2O2−δ nanocomposites prepared by a sol–gel process for intermediate temperature solid oxide fuel cell cathode applications. J Mater Sci 51:2160–2167CrossRef
13.
Zurück zum Zitat Mobius HH (1997) On the history of solid electrolyte fuel cells. J Solid State Electrochem 1:2–16CrossRef Mobius HH (1997) On the history of solid electrolyte fuel cells. J Solid State Electrochem 1:2–16CrossRef
14.
Zurück zum Zitat Adler SB (2004) Factors governing oxygen reduction in solid oxide fuel cell cathodes. Chem Rev 104:4791–4843CrossRef Adler SB (2004) Factors governing oxygen reduction in solid oxide fuel cell cathodes. Chem Rev 104:4791–4843CrossRef
15.
Zurück zum Zitat Richter J, Holtappels P, Graule T et al. (2009) Materials design for perovskite SOFC cathodes. Monatshefte für Chemie 140:985–999CrossRef Richter J, Holtappels P, Graule T et al. (2009) Materials design for perovskite SOFC cathodes. Monatshefte für Chemie 140:985–999CrossRef
16.
Zurück zum Zitat Tsipis EV, Kharton VV (2008) Electrode materials and reaction mechanisms in solid oxide fuel cells: a brief review. J Solid State Electrochem 12:1367–1391CrossRef Tsipis EV, Kharton VV (2008) Electrode materials and reaction mechanisms in solid oxide fuel cells: a brief review. J Solid State Electrochem 12:1367–1391CrossRef
17.
Zurück zum Zitat Adler SB, Lane JA, Steele BCH (1996) Electrode kinetics of porous mixed-conducting oxygen electrode. J Electrochem Soc 143:3554–3564CrossRef Adler SB, Lane JA, Steele BCH (1996) Electrode kinetics of porous mixed-conducting oxygen electrode. J Electrochem Soc 143:3554–3564CrossRef
18.
Zurück zum Zitat Ohno Y, Nagata S, Sato H (1981) Effect of electrode materials on the properties of high-temperature solid electrolyte fuel cells. Solid State Ion 3-4:439–442CrossRef Ohno Y, Nagata S, Sato H (1981) Effect of electrode materials on the properties of high-temperature solid electrolyte fuel cells. Solid State Ion 3-4:439–442CrossRef
19.
Zurück zum Zitat Atkinson A, Ramos T (2000) Chemically-induced stresses in ceramic oxygen ion-conducting membranes. Solid State Ion 129:259–269CrossRef Atkinson A, Ramos T (2000) Chemically-induced stresses in ceramic oxygen ion-conducting membranes. Solid State Ion 129:259–269CrossRef
20.
Zurück zum Zitat Takeda Y, Kanno R, Noda M et al. (1986) Perovskite electrodes for high temperature solid electrolyte fuel cells. Bull Inst Chem Res 64:157–169 Takeda Y, Kanno R, Noda M et al. (1986) Perovskite electrodes for high temperature solid electrolyte fuel cells. Bull Inst Chem Res 64:157–169
21.
Zurück zum Zitat Sun CW, Hui R, Roller J (2010) Cathode materials for solid oxide fuel cells: a review. J Solid State Electrochem 14:1125–1144CrossRef Sun CW, Hui R, Roller J (2010) Cathode materials for solid oxide fuel cells: a review. J Solid State Electrochem 14:1125–1144CrossRef
22.
Zurück zum Zitat Zhang-Steenwinkel Y, Yu Q, Frans PF et al. (2016) High performance solid-oxide fuel cell: opening windows to low temperature application. Int J Hydrogen En 41:5824–5832CrossRef Zhang-Steenwinkel Y, Yu Q, Frans PF et al. (2016) High performance solid-oxide fuel cell: opening windows to low temperature application. Int J Hydrogen En 41:5824–5832CrossRef
23.
Zurück zum Zitat Egger A, Bucher E, Yang M (2012) Comparison of oxygen exchange kinetics of the IT-SOFC cathode materials La0.5Sr0.5CoO3 − δ and La0.6Sr0.4CoO3 – δ. Solid State Ion 225:55–60CrossRef Egger A, Bucher E, Yang M (2012) Comparison of oxygen exchange kinetics of the IT-SOFC cathode materials La0.5Sr0.5CoO3 − δ and La0.6Sr0.4CoO3 – δ. Solid State Ion 225:55–60CrossRef
24.
Zurück zum Zitat Ralph JM, Schoeler AC, Krumpelt M (2001) Materials for lower temperature solid oxide fuel cells. J Mater Sci 36:1161–1172CrossRef Ralph JM, Schoeler AC, Krumpelt M (2001) Materials for lower temperature solid oxide fuel cells. J Mater Sci 36:1161–1172CrossRef
25.
Zurück zum Zitat Gwon O, Yoo S, Shin J et al. (2014) Optimization of La1−xSrxCoO3-δ perovskite cathodes for intermediate temperature solid oxide fuel cells through the analysis of crystal structure and electrical properties. Int J Hydrogen En 39:20806–20811CrossRef Gwon O, Yoo S, Shin J et al. (2014) Optimization of La1−xSrxCoO3-δ perovskite cathodes for intermediate temperature solid oxide fuel cells through the analysis of crystal structure and electrical properties. Int J Hydrogen En 39:20806–20811CrossRef
26.
Zurück zum Zitat Fleig J, Januschewsky J, Ahrens M et al. (2009) Optimized La0.6Sr0.4CoO3-δ thin-film electrodes with extremely fast oxygen-reduction kinetics. Adv Funct Mater 19:3151–3156CrossRef Fleig J, Januschewsky J, Ahrens M et al. (2009) Optimized La0.6Sr0.4CoO3-δ thin-film electrodes with extremely fast oxygen-reduction kinetics. Adv Funct Mater 19:3151–3156CrossRef
27.
Zurück zum Zitat Petrov AN, Kononchuk OF, Andreev AV et al. (1995) Crystal structure, electrical and magnetic properties of La1-xSrxCoO3-y. Solid State Ion 80:189–199CrossRef Petrov AN, Kononchuk OF, Andreev AV et al. (1995) Crystal structure, electrical and magnetic properties of La1-xSrxCoO3-y. Solid State Ion 80:189–199CrossRef
28.
Zurück zum Zitat Chiba R, Yoshimura F, Sakurai Y (1999) An investigation of LaNi1-xFexO3 as a cathode material for solid oxide fuel cells. Solid State Ion 124:281–288CrossRef Chiba R, Yoshimura F, Sakurai Y (1999) An investigation of LaNi1-xFexO3 as a cathode material for solid oxide fuel cells. Solid State Ion 124:281–288CrossRef
29.
Zurück zum Zitat Kivi I, Anderson E, Moeller P (2012) Influence of microstructural parameters of LSC cathodes on the oxygen reduction reaction parameters. J Electrochem Soc 159:F743–F750CrossRef Kivi I, Anderson E, Moeller P (2012) Influence of microstructural parameters of LSC cathodes on the oxygen reduction reaction parameters. J Electrochem Soc 159:F743–F750CrossRef
30.
Zurück zum Zitat Pecho O, Holzer L, Yang Z, Martynczuk J, Hocker T, Flatt RJ, Prestat M (2015) J Power Sources 274:295–303CrossRef Pecho O, Holzer L, Yang Z, Martynczuk J, Hocker T, Flatt RJ, Prestat M (2015) J Power Sources 274:295–303CrossRef
31.
Zurück zum Zitat Voronkova VI, Kharitonova EP, Krasil’nikova AE (2010) Specific features of phase transitions and the conduction of La2Mo2O9 oxide-ion conducting compound doped with vanadium. Crystallogr Rep 55/2:276–282CrossRef Voronkova VI, Kharitonova EP, Krasil’nikova AE (2010) Specific features of phase transitions and the conduction of La2Mo2O9 oxide-ion conducting compound doped with vanadium. Crystallogr Rep 55/2:276–282CrossRef
32.
Zurück zum Zitat Cao XG, Jiang SP (2013) Identification of oxygen reduction processes at (La, Sr)MnO3 electrode/La9.5Si6O26.25 apatite electrolyte interface of solid oxide fuel cells. Int J Hydrogen En 38:2421–2431CrossRef Cao XG, Jiang SP (2013) Identification of oxygen reduction processes at (La, Sr)MnO3 electrode/La9.5Si6O26.25 apatite electrolyte interface of solid oxide fuel cells. Int J Hydrogen En 38:2421–2431CrossRef
33.
Zurück zum Zitat Gunasekaran N, Bakshi N, Alcock CB et al. (1996) Surface characterization and catalytic properties of perovskite type solid oxide solutions, La0.8Sr0.2BO3 (B = Cr, Mn, Fe, Co or Y). Solid State Ion 83:145–150CrossRef Gunasekaran N, Bakshi N, Alcock CB et al. (1996) Surface characterization and catalytic properties of perovskite type solid oxide solutions, La0.8Sr0.2BO3 (B = Cr, Mn, Fe, Co or Y). Solid State Ion 83:145–150CrossRef
34.
Zurück zum Zitat Wang P, Yao L, Wang M et al. (2000) XPS and voltammetric studies on La1-xSrxCoO3-δ perovskite oxide electrodes. J Alloys Comp 311:53–56CrossRef Wang P, Yao L, Wang M et al. (2000) XPS and voltammetric studies on La1-xSrxCoO3-δ perovskite oxide electrodes. J Alloys Comp 311:53–56CrossRef
35.
Zurück zum Zitat Nefzi H, Sediri F (2013) Vanadium oxide nanotubes VOx-NTs: Hydrothermal synthesis, characterization, electrical study and dielectric properties. J Solid State Chem 201:237–243CrossRef Nefzi H, Sediri F (2013) Vanadium oxide nanotubes VOx-NTs: Hydrothermal synthesis, characterization, electrical study and dielectric properties. J Solid State Chem 201:237–243CrossRef
36.
Zurück zum Zitat H. Falcon H, Barbero JA, Alonso JA et al. (2002) SrFeO3-δ perovskite oxides: chemical features and performance for methane combustion. Chem Mater 14:2325–2333CrossRef H. Falcon H, Barbero JA, Alonso JA et al. (2002) SrFeO3-δ perovskite oxides: chemical features and performance for methane combustion. Chem Mater 14:2325–2333CrossRef
37.
Zurück zum Zitat Shichi Y, Munakata IF, Yamanaka M (1990) X-ray photoelectron spectroscopy analysis of Bi2Sr2Ca1-xYxCu2Oy. Phys Rev B 42:939–942CrossRef Shichi Y, Munakata IF, Yamanaka M (1990) X-ray photoelectron spectroscopy analysis of Bi2Sr2Ca1-xYxCu2Oy. Phys Rev B 42:939–942CrossRef
38.
Zurück zum Zitat Wu QH, Liu M, Jaegermann W (2005) X-ray photoelectron spectroscopy of La0.5Sr0.5MnO3. Mater Let 59:1980–1983CrossRef Wu QH, Liu M, Jaegermann W (2005) X-ray photoelectron spectroscopy of La0.5Sr0.5MnO3. Mater Let 59:1980–1983CrossRef
39.
Zurück zum Zitat Van der Heide PAW (2002) Systematic x-ray photoelectron spectroscopic study of La1−xSrx-based perovskite-type oxides. Surf Interface Analy 33:414–425CrossRef Van der Heide PAW (2002) Systematic x-ray photoelectron spectroscopic study of La1−xSrx-based perovskite-type oxides. Surf Interface Analy 33:414–425CrossRef
40.
Zurück zum Zitat Konishi H, Hirano T, Takamatsu D et al. (2015) Effect of composition of transition metals on stability of charged Li-rich layer structured cathodes, Li1.2Ni0.2-xMn0.6-xCo2xO2 (x=0, 0.033, and 0.067), at high temperatures. Elect Acta 186:591–597CrossRef Konishi H, Hirano T, Takamatsu D et al. (2015) Effect of composition of transition metals on stability of charged Li-rich layer structured cathodes, Li1.2Ni0.2-xMn0.6-xCo2xO2 (x=0, 0.033, and 0.067), at high temperatures. Elect Acta 186:591–597CrossRef
41.
Zurück zum Zitat Nonaka T, Okuda C, Seno Y (2006) In situ XAFS and micro-XAFS studies on LiNi0.8Co0.15Al0.05O2 cathode material for lithium-ion batteries. J Power Sour 162:1329–1335CrossRef Nonaka T, Okuda C, Seno Y (2006) In situ XAFS and micro-XAFS studies on LiNi0.8Co0.15Al0.05O2 cathode material for lithium-ion batteries. J Power Sour 162:1329–1335CrossRef
42.
Zurück zum Zitat Garche J, Chris D, Moseley P et al. (2009) Measurement methods structural plus electronic and chemical properties: X-ray absorption spectroscopy. In: Garche J, Chris D, Moseley P, Ogumi Z, Rand DAJ, Scrosati B (eds) Encyclopedia of electrochemical power sources, vol 3. Elsevier, Amsterdam, pp 790–801 Garche J, Chris D, Moseley P et al. (2009) Measurement methods structural plus electronic and chemical properties: X-ray absorption spectroscopy. In: Garche J, Chris D, Moseley P, Ogumi Z, Rand DAJ, Scrosati B (eds) Encyclopedia of electrochemical power sources, vol 3. Elsevier, Amsterdam, pp 790–801
43.
Zurück zum Zitat Wandekar RV, Wani BN, Bharadwaj SR (2009) Solid State Ionics 11:240–250 Wandekar RV, Wani BN, Bharadwaj SR (2009) Solid State Ionics 11:240–250
44.
Zurück zum Zitat Huang X, Peia L, Liua Z (2002) A study on PrMnO3-based perovskite oxides used in SOFC cathodes. J Alloys Comp 354:265–270CrossRef Huang X, Peia L, Liua Z (2002) A study on PrMnO3-based perovskite oxides used in SOFC cathodes. J Alloys Comp 354:265–270CrossRef
45.
Zurück zum Zitat Leone P, Santarelli M, Asinari P (2008) Experimental investigations of the microscopic features and polarization limiting factors of planar SOFCs with LSM and LSCF cathodes. J Power Sour 177:111–122CrossRef Leone P, Santarelli M, Asinari P (2008) Experimental investigations of the microscopic features and polarization limiting factors of planar SOFCs with LSM and LSCF cathodes. J Power Sour 177:111–122CrossRef
46.
Zurück zum Zitat Sitte W, Bucher E, Preis W (2002) Nonstoichiometry and transport properties of strontium-substituted lanthanum cobaltites. Solid State Ion 154:517–522CrossRef Sitte W, Bucher E, Preis W (2002) Nonstoichiometry and transport properties of strontium-substituted lanthanum cobaltites. Solid State Ion 154:517–522CrossRef
47.
Zurück zum Zitat Montero X, Fischer W, Tietz F (2009) Development and characterization of a quasi-ternary diagram based on La0.8Sr0.2(Co, Cu, Fe)O3 oxides in view of application as a cathode contact material for solid oxide fuel cells. Solid State Ion 180:731–737CrossRef Montero X, Fischer W, Tietz F (2009) Development and characterization of a quasi-ternary diagram based on La0.8Sr0.2(Co, Cu, Fe)O3 oxides in view of application as a cathode contact material for solid oxide fuel cells. Solid State Ion 180:731–737CrossRef
48.
Zurück zum Zitat Bhoga SS, Khandale AP, Pahune BS (2014) Investigation on Pr2−xSrxNiO4+δ (x = 0.3–1.0) cathode materials for intermediate temperature solid oxide fuel cell. Solid State Ion 262:340–344CrossRef Bhoga SS, Khandale AP, Pahune BS (2014) Investigation on Pr2−xSrxNiO4+δ (x = 0.3–1.0) cathode materials for intermediate temperature solid oxide fuel cell. Solid State Ion 262:340–344CrossRef
49.
Zurück zum Zitat Khandale AP, Bansod MG, Bhoga SS (2015) Improved electrical and electrochemical performance of co-doped Nd1.8Sr0.2Ni1 − xCuxO4 + δ. Solid State Ion 276:127–135CrossRef Khandale AP, Bansod MG, Bhoga SS (2015) Improved electrical and electrochemical performance of co-doped Nd1.8Sr0.2Ni1 − xCuxO4 + δ. Solid State Ion 276:127–135CrossRef
50.
Zurück zum Zitat Khandale AP, Bhoga SS (2014) Nd1.8Ce0.2CuO4+δ: Ce0.9Gd0.1O2−δ as a composite cathode for intermediate-temperature solid oxide fuel cells. J Power Sour 268:794–803CrossRef Khandale AP, Bhoga SS (2014) Nd1.8Ce0.2CuO4+δ: Ce0.9Gd0.1O2−δ as a composite cathode for intermediate-temperature solid oxide fuel cells. J Power Sour 268:794–803CrossRef
51.
Zurück zum Zitat Escudero MJ, Aguadero A, Alonso JA et al. (2007) A kinetic study of oxygen reduction reaction on La2NiO4 cathodes by means of impedance spectroscopy. J Electroanal Chem 611:107–116CrossRef Escudero MJ, Aguadero A, Alonso JA et al. (2007) A kinetic study of oxygen reduction reaction on La2NiO4 cathodes by means of impedance spectroscopy. J Electroanal Chem 611:107–116CrossRef
52.
Zurück zum Zitat Chaudhari VN, Khandale AP, Bhoga SS (2014) Sr-doped Sm2CuO4 cathode for intermediate temperature solid oxide fuel cells. Solid State Ion 268:140–149CrossRef Chaudhari VN, Khandale AP, Bhoga SS (2014) Sr-doped Sm2CuO4 cathode for intermediate temperature solid oxide fuel cells. Solid State Ion 268:140–149CrossRef
Metadaten
Titel
Synthesis and characterization of La0.595V0.005Sr0.4CoO3−δ as a novel cathode material for solid oxide fuel cells (SOFC)
verfasst von
Aysenur Eslem Kisa
Oktay Demircan
Publikationsdatum
24.02.2017
Verlag
Springer US
Erschienen in
Journal of Sol-Gel Science and Technology / Ausgabe 2/2017
Print ISSN: 0928-0707
Elektronische ISSN: 1573-4846
DOI
https://doi.org/10.1007/s10971-017-4334-y

Weitere Artikel der Ausgabe 2/2017

Journal of Sol-Gel Science and Technology 2/2017 Zur Ausgabe

Original Paper: Functional coatings, thin films and membranes (including deposition techniques)

Crystalline orientation control in sol–gel preparation of CuAlO2 thin films

Original Paper: Sol-gel and hybrid materials with surface modification for applications

Sol–gel synthesis and laser fusion of Ti-bonding porcelain hybrid coatings on titanium

Original Paper: Sol-gel and hybrid materials for energy, environment and building applications

Nanostructured TiO2 thick films aided by new viscous gels for dye-sensitized solar cell applications

Original Paper: Sol-gel and hybrid materials for dielectric, electronic, magnetic and ferroelectric applications

Enhanced dielectric and ferroelectric properties of PZT thin films derived by an ethylene glycol modified sol–gel method

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.