Skip to main content
Erschienen in: Journal of Sol-Gel Science and Technology 2/2018

26.03.2018 | Original Paper: Sol-gel and hybrid materials for biological and health (medical) applications

Multi-element substituted hydroxyapatites: synthesis, structural characteristics and evaluation of their bioactivity, cell viability, and antibacterial activity

verfasst von: Abinaya Rajendran, Subha Balakrishnan, Ravichandran Kulandaivelu, Sankara Narayanan T. S. Nellaiappan

Erschienen in: Journal of Sol-Gel Science and Technology | Ausgabe 2/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Synthesis of unsubstituted and multi-element (magnesium, zinc and cobalt) substituted hydroxyapatites (HAP) with varying stoichiometric compositions and evaluation of their morphological and structural characteristics, degree of crystallinity, bioactivity, cytotoxicity and antibacterial activity are addressed. The morphological features are not altered much following the substitution of Mg2+, Zn2+, and Co2+ in the HAP lattice. Nevertheless, their substitution exerts a strong influence on the structural characteristics HAP. Rietveld refinement analysis of the X-ray diffraction patterns indicates a decrease in crystallinity and mineralogical composition of HAP phase, which is accompanied with an increase of β-tricalcium phosphate (β-TCP) phase along with Co3O4 phase. Broadening of the PO43− peaks and a decrease in intensity of the OH peak are observed by Fourier-transform infrared spectra. A decrease in intensity, broadening and a slight shift in Raman band (at 961 cm−1 for HAP) towards the lower side suggest the incorporation of Mg, Zn, and Co, disordering of the crystal structure of HAP and formation of β-TCP as additional phase besides HAP. The MgZnCo-HAP’s exhibits a better bioactivity, cell viability and anti-bacterial activity than the unsubstituted HAP. However, a decrease in cell viability and anti-bacterial activity are observed when the stoichiometric ratio of the substituent elements is relatively higher.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Mucalo M (ed) (2015) Hydroxyapatite (HAp) for biomedical applications, woodhead publishing series in biomaterials. Elsevier-Woodhead Publishers, Cambridge Mucalo M (ed) (2015) Hydroxyapatite (HAp) for biomedical applications, woodhead publishing series in biomaterials. Elsevier-Woodhead Publishers, Cambridge
2.
Zurück zum Zitat Dorozhkin SV (2010) Bioceramics of calcium orthophosphates Biomaterials 31:1465–1485CrossRef Dorozhkin SV (2010) Bioceramics of calcium orthophosphates Biomaterials 31:1465–1485CrossRef
3.
Zurück zum Zitat Dorozhkin SV (2012) Calcium orthophosphates: applications in Nature, Biology, and Medicine. Pan Stanford Publishing, Singapore Dorozhkin SV (2012) Calcium orthophosphates: applications in Nature, Biology, and Medicine. Pan Stanford Publishing, Singapore
4.
Zurück zum Zitat Koutsopoulos S (2002) Synthesis and characterization of hydroxyapatite crystals: A review study on the analytical methods. J Biomed Mater Res 62:600–612CrossRef Koutsopoulos S (2002) Synthesis and characterization of hydroxyapatite crystals: A review study on the analytical methods. J Biomed Mater Res 62:600–612CrossRef
5.
Zurück zum Zitat Gómez-Morales J, Iafisco M, Delgado-López JM, Sarda S, Drouet C (2013) Progress on the preparation of nanocrystalline apatites and surface characterization: overview of fundamental and applied aspects. Prog Cryst Growth Charact Mater 59:1–46CrossRef Gómez-Morales J, Iafisco M, Delgado-López JM, Sarda S, Drouet C (2013) Progress on the preparation of nanocrystalline apatites and surface characterization: overview of fundamental and applied aspects. Prog Cryst Growth Charact Mater 59:1–46CrossRef
6.
Zurück zum Zitat Feng W, Mu-sen L, Yu-peng L, Yong-xin Q (2005) A simple sol–gel technique for preparing hydroxyapatite nanopowders. Mater Lett 59:916–919CrossRef Feng W, Mu-sen L, Yu-peng L, Yong-xin Q (2005) A simple sol–gel technique for preparing hydroxyapatite nanopowders. Mater Lett 59:916–919CrossRef
7.
Zurück zum Zitat Fathi MH, Hanifi A (2007) Evaluation and characterization of nanostructure hydroxyapatite powder prepared by simple sol–gel method. Mater Lett 61:3978–3983CrossRef Fathi MH, Hanifi A (2007) Evaluation and characterization of nanostructure hydroxyapatite powder prepared by simple sol–gel method. Mater Lett 61:3978–3983CrossRef
8.
Zurück zum Zitat Shepherd JH, Shepherd DV, Best SM (2012) Substituted hydroxyapatites for bone repair. J Mater Sci Mater Med 23:2335–2347CrossRef Shepherd JH, Shepherd DV, Best SM (2012) Substituted hydroxyapatites for bone repair. J Mater Sci Mater Med 23:2335–2347CrossRef
9.
Zurück zum Zitat Boanini E, Gazzano M, Bigi A (2010) Ionic substitutions in calcium phosphates synthesized at low temperature. Acta Biomater 6:1882–1894CrossRef Boanini E, Gazzano M, Bigi A (2010) Ionic substitutions in calcium phosphates synthesized at low temperature. Acta Biomater 6:1882–1894CrossRef
10.
Zurück zum Zitat Cacciotti I (2015) Cationic and anionic substitutions in hydroxyapatite. In: Antoniac IV (ed) Handbook of bioceramics and biocomposites. Springer International Publishing, Switzerland, p 1–68 Cacciotti I (2015) Cationic and anionic substitutions in hydroxyapatite. In: Antoniac IV (ed) Handbook of bioceramics and biocomposites. Springer International Publishing, Switzerland, p 1–68
11.
Zurück zum Zitat Šupová M (2015) Substituted hydroxyapatites for biomedical applications: A review. Ceram Int 41:9203–9231CrossRef Šupová M (2015) Substituted hydroxyapatites for biomedical applications: A review. Ceram Int 41:9203–9231CrossRef
12.
Zurück zum Zitat Percival M (1999) Bone health and osteoporosis. Appl Nutr Sci Rep 5:1–6 Percival M (1999) Bone health and osteoporosis. Appl Nutr Sci Rep 5:1–6
13.
Zurück zum Zitat Moonga BS, Dempster DW (1995) Zinc is a potent inhibitor of osteoclastic bone resorption in vitro. J Bone Miner Res 10:453–457CrossRef Moonga BS, Dempster DW (1995) Zinc is a potent inhibitor of osteoclastic bone resorption in vitro. J Bone Miner Res 10:453–457CrossRef
14.
Zurück zum Zitat Yamaguchi M (1998) Role of zinc in bone formation and bone resorption. J Trace Elem Exp Med 11:119–135CrossRef Yamaguchi M (1998) Role of zinc in bone formation and bone resorption. J Trace Elem Exp Med 11:119–135CrossRef
15.
Zurück zum Zitat Aina V, Lusvardi G, Annaz B, Gibson IR, Imrie FE, Malavasi G, Menabue L, Cerrato G, Martra G (2012) Magnesium and strontium-co-substituted hydroxyapatite: the effects of doped-ions on the structure and chemico-physical properties. J Mater Sci Mater Med 23:2867–2879CrossRef Aina V, Lusvardi G, Annaz B, Gibson IR, Imrie FE, Malavasi G, Menabue L, Cerrato G, Martra G (2012) Magnesium and strontium-co-substituted hydroxyapatite: the effects of doped-ions on the structure and chemico-physical properties. J Mater Sci Mater Med 23:2867–2879CrossRef
16.
Zurück zum Zitat Cox SC, Jamshidi P, Grover LM, Mallick KK (2014) Preparation and characterisation of nanophase Sr, Mg, and Zn substituted hydroxyapatite by aqueous precipitation. Mater Sci Eng C35:106–114CrossRef Cox SC, Jamshidi P, Grover LM, Mallick KK (2014) Preparation and characterisation of nanophase Sr, Mg, and Zn substituted hydroxyapatite by aqueous precipitation. Mater Sci Eng C35:106–114CrossRef
17.
Zurück zum Zitat Bigi A, Falini G, Foresti E, Gazzano M, Ripamonti A, Roveri N (1993) Magnesium influence on hydroxyapatite crystallization. J Inorg Biochem 49:69–78CrossRef Bigi A, Falini G, Foresti E, Gazzano M, Ripamonti A, Roveri N (1993) Magnesium influence on hydroxyapatite crystallization. J Inorg Biochem 49:69–78CrossRef
18.
Zurück zum Zitat Landi E, Logroscino G, Proietti L, Tampieri A, Sandri M, Sprio S (2008) Biomimetic Mg substituted hydroxyapatite: from synthesis to in vivo behaviour. J Mater Sci Mater Med 19:239–247CrossRef Landi E, Logroscino G, Proietti L, Tampieri A, Sandri M, Sprio S (2008) Biomimetic Mg substituted hydroxyapatite: from synthesis to in vivo behaviour. J Mater Sci Mater Med 19:239–247CrossRef
19.
Zurück zum Zitat Batra U, Kapoor S, Sharma S (2013) Influence of magnesium ion substitution on structural and thermal behavior of nanodimensional hydroxyapatite. J Mater Eng Perform 22:1798–1806CrossRef Batra U, Kapoor S, Sharma S (2013) Influence of magnesium ion substitution on structural and thermal behavior of nanodimensional hydroxyapatite. J Mater Eng Perform 22:1798–1806CrossRef
20.
Zurück zum Zitat Cacciotti I, Bianco A, Lombardi M, Montanaro L (2009) Mg-substituted hydroxyapatite nanopowders: synthesis, thermal stability and sintering behaviour. J Eur Ceram Soc 29:2969–2978CrossRef Cacciotti I, Bianco A, Lombardi M, Montanaro L (2009) Mg-substituted hydroxyapatite nanopowders: synthesis, thermal stability and sintering behaviour. J Eur Ceram Soc 29:2969–2978CrossRef
21.
Zurück zum Zitat Thian ES, Konishi T, Kawanobe Y, Lim PN, Choong C, Ho B, Aizawa M (2013) Zinc-substituted hydroxyapatite: a biomaterial with enhanced bioactivity and antibacterial properties. J Mater Sci Mater Med 24:437–445CrossRef Thian ES, Konishi T, Kawanobe Y, Lim PN, Choong C, Ho B, Aizawa M (2013) Zinc-substituted hydroxyapatite: a biomaterial with enhanced bioactivity and antibacterial properties. J Mater Sci Mater Med 24:437–445CrossRef
22.
Zurück zum Zitat Bigi A, Foresti E, Gandolfi M, Gazzano M, Roveri N (1995) Inhibiting effect of zinc on hydroxylapatite crystallization. J Inorg Biochem 58:49–58CrossRef Bigi A, Foresti E, Gandolfi M, Gazzano M, Roveri N (1995) Inhibiting effect of zinc on hydroxylapatite crystallization. J Inorg Biochem 58:49–58CrossRef
23.
Zurück zum Zitat Guerra-Lopez JR, Echeverria GA, Guida JA, Vina R, Punte G (2015) Synthetic hydroxyapatite doped with Zn(II) studied by X-Ray diffraction, infrared, Raman and thermal analysis. J Phys Chem Solids 81:57–65CrossRef Guerra-Lopez JR, Echeverria GA, Guida JA, Vina R, Punte G (2015) Synthetic hydroxyapatite doped with Zn(II) studied by X-Ray diffraction, infrared, Raman and thermal analysis. J Phys Chem Solids 81:57–65CrossRef
24.
Zurück zum Zitat Tang Y, Chappell HF, Dove MT, Reeder RJ, Lee YJ (2009) Zinc incorporation into hydroxylapatite. Biomaterials 30:2864–2872CrossRef Tang Y, Chappell HF, Dove MT, Reeder RJ, Lee YJ (2009) Zinc incorporation into hydroxylapatite. Biomaterials 30:2864–2872CrossRef
25.
Zurück zum Zitat Stanic′ V, Dimitrijevic′ S, Antic′-Stankovic′ J, Mitric′ M, Jokic′ B, Plec′aš I, Raičevic′ S (2010) Synthesis, characterization and antimicrobial activity of copper and zinc-doped hydroxyapatite nanopowders. Appl Surf Sci 256:6083–6089CrossRef Stanic′ V, Dimitrijevic′ S, Antic′-Stankovic′ J, Mitric′ M, Jokic′ B, Plec′aš I, Raičevic′ S (2010) Synthesis, characterization and antimicrobial activity of copper and zinc-doped hydroxyapatite nanopowders. Appl Surf Sci 256:6083–6089CrossRef
26.
Zurück zum Zitat Miyaji F, Kono Y, Suyama Y (2005) Formation and structure of zinc-substituted calcium hydroxyapatite. Mater Res Bull 40:209–220CrossRef Miyaji F, Kono Y, Suyama Y (2005) Formation and structure of zinc-substituted calcium hydroxyapatite. Mater Res Bull 40:209–220CrossRef
27.
Zurück zum Zitat Ren F, Xin R, Ge X, Leng Y (2009) Characterization and structural analysis of zinc-substituted hydroxyapatites. Acta Biomater 5:3141–3149CrossRef Ren F, Xin R, Ge X, Leng Y (2009) Characterization and structural analysis of zinc-substituted hydroxyapatites. Acta Biomater 5:3141–3149CrossRef
28.
Zurück zum Zitat Tank KP, Chudasama KS, Thaker VS, Joshi MJ (2013) Cobalt-doped nano hydroxyapatite: synthesis, characterization, antimicrobial and hemolytic studies. J Nanopart Res 15:1644CrossRef Tank KP, Chudasama KS, Thaker VS, Joshi MJ (2013) Cobalt-doped nano hydroxyapatite: synthesis, characterization, antimicrobial and hemolytic studies. J Nanopart Res 15:1644CrossRef
29.
Zurück zum Zitat Stojanovic Z, Veselinovic L, Markovic S, Ignjatovic N, Uskokovic D (2009) Hydrothermal synthesis of nanosized pure and cobalt-exchanged hydroxyapatite. Mater Manuf Process 24:1096–1103CrossRef Stojanovic Z, Veselinovic L, Markovic S, Ignjatovic N, Uskokovic D (2009) Hydrothermal synthesis of nanosized pure and cobalt-exchanged hydroxyapatite. Mater Manuf Process 24:1096–1103CrossRef
30.
Zurück zum Zitat Kramer E, Itzkowitz E, Wei M (2014) Synthesis and characterization of cobalt-substituted hydroxyapatite powders. Ceram Int 40:13471–13480CrossRef Kramer E, Itzkowitz E, Wei M (2014) Synthesis and characterization of cobalt-substituted hydroxyapatite powders. Ceram Int 40:13471–13480CrossRef
31.
Zurück zum Zitat Kulanthaivel S, Roy B, Agarwal T, Giri S, Pramanik K, Pal K, Ray SS, Maiti TK, Banerjee I (2016) Cobalt doped proangiogenic hydroxyapatite for bone tissue engineering application. Mater Sci Eng C58:648–658CrossRef Kulanthaivel S, Roy B, Agarwal T, Giri S, Pramanik K, Pal K, Ray SS, Maiti TK, Banerjee I (2016) Cobalt doped proangiogenic hydroxyapatite for bone tissue engineering application. Mater Sci Eng C58:648–658CrossRef
32.
Zurück zum Zitat Ignjatović N, Ajduković Z, Savić V, Najman S, Mihailović D, Vasiljević P, Stojanović Z, Uskoković V, Uskoković D (2013) Nanoparticles of cobalt-substituted hydroxyapatite in regeneration of mandibular osteoporotic bones. J Mater Sci Mater Med 24:343–354CrossRef Ignjatović N, Ajduković Z, Savić V, Najman S, Mihailović D, Vasiljević P, Stojanović Z, Uskoković V, Uskoković D (2013) Nanoparticles of cobalt-substituted hydroxyapatite in regeneration of mandibular osteoporotic bones. J Mater Sci Mater Med 24:343–354CrossRef
33.
Zurück zum Zitat Moreira MP, Soares GDA, Dentzer J, Anselme K, Sena LÁ, Kuznetsov A, Santos EA (2016) Synthesis of magnesium and manganese-doped hydroxyapatite structures assisted by the simultaneous incorporation of strontium. Mater Sci Eng C61:736–743CrossRef Moreira MP, Soares GDA, Dentzer J, Anselme K, Sena LÁ, Kuznetsov A, Santos EA (2016) Synthesis of magnesium and manganese-doped hydroxyapatite structures assisted by the simultaneous incorporation of strontium. Mater Sci Eng C61:736–743CrossRef
34.
Zurück zum Zitat Iqbal N, Kadir MRA, Mahmood NH, Salim N, Froemming GRA, Balaji HR, Kamarul T (2014) Characterization, antibacterial and in vitro compatibility of zinc–silver doped hydroxyapatite nanoparticles prepared through microwave synthesis. Ceram Int 40:4507–4513CrossRef Iqbal N, Kadir MRA, Mahmood NH, Salim N, Froemming GRA, Balaji HR, Kamarul T (2014) Characterization, antibacterial and in vitro compatibility of zinc–silver doped hydroxyapatite nanoparticles prepared through microwave synthesis. Ceram Int 40:4507–4513CrossRef
35.
Zurück zum Zitat Lowry N, Han Y, Meenan BJ, Boyd AR (2017) Strontium and zinc co-substituted nanophase hydroxyapatite. Ceram Int 43:12070–12078CrossRef Lowry N, Han Y, Meenan BJ, Boyd AR (2017) Strontium and zinc co-substituted nanophase hydroxyapatite. Ceram Int 43:12070–12078CrossRef
36.
Zurück zum Zitat Robinson L, Salma-Ancane K, Stipniece L, Meenan BJ, Boyd AR (2017) The deposition of strontium and zinc co-substituted hydroxyapatite coatings. J Mater Sci Mater Med 29:51CrossRef Robinson L, Salma-Ancane K, Stipniece L, Meenan BJ, Boyd AR (2017) The deposition of strontium and zinc co-substituted hydroxyapatite coatings. J Mater Sci Mater Med 29:51CrossRef
37.
Zurück zum Zitat Kulanthaivel S, Mishra U, Agarwal T, Giri S, Pal K, Pramanik K, Banerjee I (2015) Improving the osteogenic and angiogenic properties of synthetic hydroxyapatite by dual doping of bivalent cobalt and magnesium ion. Ceram Int 41:11323–11333CrossRef Kulanthaivel S, Mishra U, Agarwal T, Giri S, Pal K, Pramanik K, Banerjee I (2015) Improving the osteogenic and angiogenic properties of synthetic hydroxyapatite by dual doping of bivalent cobalt and magnesium ion. Ceram Int 41:11323–11333CrossRef
38.
Zurück zum Zitat Kolmas J, Jaklewicz A, Zima A, Buc′ko M, Paszkiewicz Z, Lis J, Lósarczyk S ́ (2011) Incorporation of carbonate and magnesium ions into synthetic hydroxyapatite: the effect on physicochemical properties J Mol Struct 987:40–50CrossRef Kolmas J, Jaklewicz A, Zima A, Buc′ko M, Paszkiewicz Z, Lis J, Lósarczyk S ́ (2011) Incorporation of carbonate and magnesium ions into synthetic hydroxyapatite: the effect on physicochemical properties J Mol Struct 987:40–50CrossRef
39.
Zurück zum Zitat Suresh Kumar G, Thamizhavel A, Yokogawa Y, Narayana Kalkura S, Girija EK (2012) Synthesis, characterization and in vitro studies of zinc and carbonate co-substituted nano-hydroxyapatite for biomedical applications. Mater Chem Phys 134:1127–1135CrossRef Suresh Kumar G, Thamizhavel A, Yokogawa Y, Narayana Kalkura S, Girija EK (2012) Synthesis, characterization and in vitro studies of zinc and carbonate co-substituted nano-hydroxyapatite for biomedical applications. Mater Chem Phys 134:1127–1135CrossRef
40.
Zurück zum Zitat Gomes S, Vichery C, Descamps S, Martinez H, Kaur A, Jacobs A, Nedelec JM, Renaudin G (2018) Copper doping of calcium phosphate bioceramics from mechanism to the control of cytotoxicity. Acta Biommaterialia 65:465–474 Gomes S, Vichery C, Descamps S, Martinez H, Kaur A, Jacobs A, Nedelec JM, Renaudin G (2018) Copper doping of calcium phosphate bioceramics from mechanism to the control of cytotoxicity. Acta Biommaterialia 65:465–474
41.
Zurück zum Zitat Kokubo T, Kushitani H, Sakka S, Kitsugi T, Yamamuro T (1990) Solutions able to reproduce in vivo surface-structure changes in bioactive glass ceramic A-W3. J Biomed Mater Res 24:721–734CrossRef Kokubo T, Kushitani H, Sakka S, Kitsugi T, Yamamuro T (1990) Solutions able to reproduce in vivo surface-structure changes in bioactive glass ceramic A-W3. J Biomed Mater Res 24:721–734CrossRef
42.
Zurück zum Zitat Esakkirajan M, Prabhu NM, Arulvasu C, Beulaja M, Manikandan R, Thiagarajan R, Govindarajan K, Prabhu D, Dinesh D, Babu G, Dhanasekaran G (2014) Anti-proliferative effect of a compound isolated from Cassia auriculate against human colon cancer cell line HCT 15. Spectrochim Acta Part A 120:462–466CrossRef Esakkirajan M, Prabhu NM, Arulvasu C, Beulaja M, Manikandan R, Thiagarajan R, Govindarajan K, Prabhu D, Dinesh D, Babu G, Dhanasekaran G (2014) Anti-proliferative effect of a compound isolated from Cassia auriculate against human colon cancer cell line HCT 15. Spectrochim Acta Part A 120:462–466CrossRef
43.
Zurück zum Zitat Elkabouss K, Kacimi M, Ziad M, Ammar S, Bozon-Veduraz F (2004) Cobalt-exchanged hydroxyapatite catalysts: magnetic studies, spectroscopic investigations, performance in 2-butanol and ethane oxidative dehydrogenations. J Catal 226:16–24CrossRef Elkabouss K, Kacimi M, Ziad M, Ammar S, Bozon-Veduraz F (2004) Cobalt-exchanged hydroxyapatite catalysts: magnetic studies, spectroscopic investigations, performance in 2-butanol and ethane oxidative dehydrogenations. J Catal 226:16–24CrossRef
44.
Zurück zum Zitat Jarcho M, Bolen CH, Thomas MB, Bobick J, Kay JF, Doremus RH (1976) Hydroxylapatite synthesis and characterization in dense polycrystalline form. J Mater Sci 11:2027–2035CrossRef Jarcho M, Bolen CH, Thomas MB, Bobick J, Kay JF, Doremus RH (1976) Hydroxylapatite synthesis and characterization in dense polycrystalline form. J Mater Sci 11:2027–2035CrossRef
45.
Zurück zum Zitat Li MO, Xiao XF, Liu RF, Chen CY, Huang LZ (2008) Structural characterization of zinc-substituted hydroxyapatite prepared by hydrothermal method. J Mater Sci Mater Med 19:797–803CrossRef Li MO, Xiao XF, Liu RF, Chen CY, Huang LZ (2008) Structural characterization of zinc-substituted hydroxyapatite prepared by hydrothermal method. J Mater Sci Mater Med 19:797–803CrossRef
46.
Zurück zum Zitat Shepherd D, Best SM (2013) Production of zinc substituted hydroxyapatite using various precipitation routes. Biomed Mater 8:025003CrossRef Shepherd D, Best SM (2013) Production of zinc substituted hydroxyapatite using various precipitation routes. Biomed Mater 8:025003CrossRef
47.
Zurück zum Zitat Lorenzo LMR, Regi MV (2000) Controlled crystallization of calcium phosphate apatites. Chem Mater 12:2460–2465CrossRef Lorenzo LMR, Regi MV (2000) Controlled crystallization of calcium phosphate apatites. Chem Mater 12:2460–2465CrossRef
48.
Zurück zum Zitat Gomes S, Renaudin G, Jallot E, Nedelec JM (2009) Structural characterization and biological fluid interaction of sol-gel derived Mg substituted biphasic phosphate ceramic. App Mater Interface 1(2):505–513CrossRef Gomes S, Renaudin G, Jallot E, Nedelec JM (2009) Structural characterization and biological fluid interaction of sol-gel derived Mg substituted biphasic phosphate ceramic. App Mater Interface 1(2):505–513CrossRef
49.
Zurück zum Zitat Gomes S, Karur A, Nedelec JM, Renaudin G (2014) X-Ray absorption spectroscopy shining (synchrotron) light onto the insertion of Zn2+ in calcium phosphate ceramics and its influence on their behavior under biological conditions. J Mater Chem 2:536–545CrossRef Gomes S, Karur A, Nedelec JM, Renaudin G (2014) X-Ray absorption spectroscopy shining (synchrotron) light onto the insertion of Zn2+ in calcium phosphate ceramics and its influence on their behavior under biological conditions. J Mater Chem 2:536–545CrossRef
50.
Zurück zum Zitat Gomes S, Karur A, Greneche JM, Nedelec JM, Renaudin G (2017) Atomic scale modeling of iron-doped biphasic calcium phosphate bioceramics. Acta Biomater 50:78–88CrossRef Gomes S, Karur A, Greneche JM, Nedelec JM, Renaudin G (2017) Atomic scale modeling of iron-doped biphasic calcium phosphate bioceramics. Acta Biomater 50:78–88CrossRef
51.
Zurück zum Zitat Renaudin G, Gomes S, Nedelec JM (2017) First-row transition metal doping in calcium phosphate bioceramics: a detailed crystallographic study Mater 10(1):92CrossRef Renaudin G, Gomes S, Nedelec JM (2017) First-row transition metal doping in calcium phosphate bioceramics: a detailed crystallographic study Mater 10(1):92CrossRef
52.
Zurück zum Zitat Gomes S, Nedelec JM, Jallot E, Sheptyakov D, Renaudin G (2011) Unexpected mechanism of Zn2+ insertion in calcium phosphate bioceramics. Chem Mater 23:3072–3085CrossRef Gomes S, Nedelec JM, Jallot E, Sheptyakov D, Renaudin G (2011) Unexpected mechanism of Zn2+ insertion in calcium phosphate bioceramics. Chem Mater 23:3072–3085CrossRef
53.
Zurück zum Zitat Antonakos A, Liarokapis E, Leventouri T (2007) Micro-Raman and FTIR studies of synthetic and natural apatites. Biomaterials 28:3043–3054CrossRef Antonakos A, Liarokapis E, Leventouri T (2007) Micro-Raman and FTIR studies of synthetic and natural apatites. Biomaterials 28:3043–3054CrossRef
54.
Zurück zum Zitat Yang Y, Perez-Amodio S, Barre‘ re-de Groot FYF, Everts V, van Blitterswijk CA, Habibovic P (2010) The effects of inorganic additives to calcium phosphate on in vitro behaviour of osteoblasts and osteoclasts. Biomaterials 31:2976–2989CrossRef Yang Y, Perez-Amodio S, Barre‘ re-de Groot FYF, Everts V, van Blitterswijk CA, Habibovic P (2010) The effects of inorganic additives to calcium phosphate on in vitro behaviour of osteoblasts and osteoclasts. Biomaterials 31:2976–2989CrossRef
55.
Zurück zum Zitat Zilm ME, Chen L, Sharma V, McDannald A, Jain M, Ramprasad R, Wei M (2016) Hydroxyapatite substituted by transition metals: experiment and theory. Phys Chem Chem Phys 18:16457–16465CrossRef Zilm ME, Chen L, Sharma V, McDannald A, Jain M, Ramprasad R, Wei M (2016) Hydroxyapatite substituted by transition metals: experiment and theory. Phys Chem Chem Phys 18:16457–16465CrossRef
56.
Zurück zum Zitat Penel G, Leroy G, Rey C, Bres E (1998) Micro Raman spectral study of the PO4 and CO3 vibrational modes in synthetic and biological apatites. Calcif Tissue Int 63:475–481CrossRef Penel G, Leroy G, Rey C, Bres E (1998) Micro Raman spectral study of the PO4 and CO3 vibrational modes in synthetic and biological apatites. Calcif Tissue Int 63:475–481CrossRef
57.
Zurück zum Zitat Awonusi A, Morris M, Tecklenburg M (2007) Carbonate assignment and calibration in the Raman spectrum of apatite. Calcif Tissue Int 81:46–52CrossRef Awonusi A, Morris M, Tecklenburg M (2007) Carbonate assignment and calibration in the Raman spectrum of apatite. Calcif Tissue Int 81:46–52CrossRef
58.
Zurück zum Zitat Pasteris JD, Wopenka B, Freeman JJ, Rogers K, Valsami-Jones E, van der Houwen JAM, Silva MJ (2004) Lack of OH in nanocrystalline apatite as a function of degree of atomic order: implications for bone and biomaterials. Biomaterials 25:229–238CrossRef Pasteris JD, Wopenka B, Freeman JJ, Rogers K, Valsami-Jones E, van der Houwen JAM, Silva MJ (2004) Lack of OH in nanocrystalline apatite as a function of degree of atomic order: implications for bone and biomaterials. Biomaterials 25:229–238CrossRef
59.
Zurück zum Zitat Darimont GL, Gilbert B, Cloots R, Non-destructive R (2003) evaluation of crystallinity and chemical composition by Raman spectroscopy in hydroxyapatite-coated implants. Mater Lett 58:71–73CrossRef Darimont GL, Gilbert B, Cloots R, Non-destructive R (2003) evaluation of crystallinity and chemical composition by Raman spectroscopy in hydroxyapatite-coated implants. Mater Lett 58:71–73CrossRef
60.
Zurück zum Zitat Aminzadeh A, Shahabi S, Walsh LJ (1999) Raman spectroscopic studies of CO2 laser-irradiated human dental enamel. Spectrochim Acta Part A 55:1303–1308CrossRef Aminzadeh A, Shahabi S, Walsh LJ (1999) Raman spectroscopic studies of CO2 laser-irradiated human dental enamel. Spectrochim Acta Part A 55:1303–1308CrossRef
61.
Zurück zum Zitat Kim HM, Himeno T, Kokubo T, Nakamura T (2005) Process and kinetics of bonelike apatite formation on sintered hydroxyapatite in a simulated body fluid. Biomaterials 26:4366–4373CrossRef Kim HM, Himeno T, Kokubo T, Nakamura T (2005) Process and kinetics of bonelike apatite formation on sintered hydroxyapatite in a simulated body fluid. Biomaterials 26:4366–4373CrossRef
62.
Zurück zum Zitat LeGeros RZ (1993) Biodegradation and bioresorption of calcium phosphate ceramics. Clin Mater 14:65–88CrossRef LeGeros RZ (1993) Biodegradation and bioresorption of calcium phosphate ceramics. Clin Mater 14:65–88CrossRef
63.
Zurück zum Zitat Xue W, Liu X, Zheng X, Ding C (2005) Effect of hydroxyapatite coating crystallinity on dissolution and osseointegration in vivo. J Biomed Mater Res A 74:553–561CrossRef Xue W, Liu X, Zheng X, Ding C (2005) Effect of hydroxyapatite coating crystallinity on dissolution and osseointegration in vivo. J Biomed Mater Res A 74:553–561CrossRef
64.
Zurück zum Zitat Ding Q, Zhang X, Huang Y, Yan Y, Pang X (2015) In vitro cytocompatibility and corrosion resistance of zinc-doped hydroxyapatite coatings on a titanium substrate. J Mater Sci 50:189–202CrossRef Ding Q, Zhang X, Huang Y, Yan Y, Pang X (2015) In vitro cytocompatibility and corrosion resistance of zinc-doped hydroxyapatite coatings on a titanium substrate. J Mater Sci 50:189–202CrossRef
65.
Zurück zum Zitat Wang X, Ito A, Sogo Y, Li X, Oyane A (2010) Zinc-containing apatite layers on external fixation rods promoting cell activity. Acta Biomater 6:962–968CrossRef Wang X, Ito A, Sogo Y, Li X, Oyane A (2010) Zinc-containing apatite layers on external fixation rods promoting cell activity. Acta Biomater 6:962–968CrossRef
66.
Zurück zum Zitat Ito A, Ojima K, Naito H, Ichinose N, Tateishi T (2000) Preparation, solubility, and cytocompatibility of zinc-releasing calcium phosphate ceramics. J Biomed Mater Res 50:178–183CrossRef Ito A, Ojima K, Naito H, Ichinose N, Tateishi T (2000) Preparation, solubility, and cytocompatibility of zinc-releasing calcium phosphate ceramics. J Biomed Mater Res 50:178–183CrossRef
67.
Zurück zum Zitat Lu J, Wei J, Yan Y, Li H, Jia J, Wei S, Guo H, Xiao T, Liu C (2011) Preparation and preliminary cytocompatibility of magnesium doped apatite cement with degradability for bone regeneration. J Mater Sci Mater Med 22:607–615CrossRef Lu J, Wei J, Yan Y, Li H, Jia J, Wei S, Guo H, Xiao T, Liu C (2011) Preparation and preliminary cytocompatibility of magnesium doped apatite cement with degradability for bone regeneration. J Mater Sci Mater Med 22:607–615CrossRef
68.
Zurück zum Zitat de Lima IR, Alves GG, Soriano CA, Campaneli AP, Gasparoto TH, Ramos Jr ES, de Sena LA, Rossi AM, Granjeiro JM (2011) Understanding the impact of divalent cation substitution on hydroxyapatite: An in vitro multiparametric study on biocompatibility. J Biomed Mater Res Part A 98A:351–358CrossRef de Lima IR, Alves GG, Soriano CA, Campaneli AP, Gasparoto TH, Ramos Jr ES, de Sena LA, Rossi AM, Granjeiro JM (2011) Understanding the impact of divalent cation substitution on hydroxyapatite: An in vitro multiparametric study on biocompatibility. J Biomed Mater Res Part A 98A:351–358CrossRef
69.
Zurück zum Zitat Tin OM, Gopalakrishna V, Samsuddin AR, Al-Salihi KA, Shamsuria O (2007) Antibacterial property of locally produced hydroxyapatite. Arch Orofac Sci 2:41–44 Tin OM, Gopalakrishna V, Samsuddin AR, Al-Salihi KA, Shamsuria O (2007) Antibacterial property of locally produced hydroxyapatite. Arch Orofac Sci 2:41–44
70.
Zurück zum Zitat Sahithi K, Swetha M, Prabaharan M, Moorthi A, Saranya N, Ramasamy K, Srinivasan N, Partridge NC, Selvamurugan N (2010) Synthesis and characterization of nanoscale-hydroxyapatite-copper for antimicrobial activity towards bone tissue engineering applications. J Biomed Nanotechnol 6:333–339CrossRef Sahithi K, Swetha M, Prabaharan M, Moorthi A, Saranya N, Ramasamy K, Srinivasan N, Partridge NC, Selvamurugan N (2010) Synthesis and characterization of nanoscale-hydroxyapatite-copper for antimicrobial activity towards bone tissue engineering applications. J Biomed Nanotechnol 6:333–339CrossRef
71.
Zurück zum Zitat Kolmas J, Groszyk E, Kwiatkowska-Rozycka D (2014) Substituted hydroxyapatites with antibacterial properties BioMed, Res Int 123:1–15Article ID 178CrossRef Kolmas J, Groszyk E, Kwiatkowska-Rozycka D (2014) Substituted hydroxyapatites with antibacterial properties BioMed, Res Int 123:1–15Article ID 178CrossRef
72.
Zurück zum Zitat Chung R, Hsieh M, Huang C, Perng L, Wen H, Chin T (2006) Antimicrobial effect and human gingival biocompatibility of hydroxyapatite sol-gel coatings. J Biomed Mater Res B 76B:169–178CrossRef Chung R, Hsieh M, Huang C, Perng L, Wen H, Chin T (2006) Antimicrobial effect and human gingival biocompatibility of hydroxyapatite sol-gel coatings. J Biomed Mater Res B 76B:169–178CrossRef
73.
Zurück zum Zitat Swetha M, Sahithi K, Moorthi A, Saranya N, Saravanan S, Ramasamy K, Srinivasan N, Selvamurugan N (2012) Synthesis, characterization, and antimicrobial activity of nano-hydroxyapatite-zinc for bone tissue engineering applications. J Nanosci Nanotechnol 12:167–172CrossRef Swetha M, Sahithi K, Moorthi A, Saranya N, Saravanan S, Ramasamy K, Srinivasan N, Selvamurugan N (2012) Synthesis, characterization, and antimicrobial activity of nano-hydroxyapatite-zinc for bone tissue engineering applications. J Nanosci Nanotechnol 12:167–172CrossRef
Metadaten
Titel
Multi-element substituted hydroxyapatites: synthesis, structural characteristics and evaluation of their bioactivity, cell viability, and antibacterial activity
verfasst von
Abinaya Rajendran
Subha Balakrishnan
Ravichandran Kulandaivelu
Sankara Narayanan T. S. Nellaiappan
Publikationsdatum
26.03.2018
Verlag
Springer US
Erschienen in
Journal of Sol-Gel Science and Technology / Ausgabe 2/2018
Print ISSN: 0928-0707
Elektronische ISSN: 1573-4846
DOI
https://doi.org/10.1007/s10971-018-4634-x

Weitere Artikel der Ausgabe 2/2018

Journal of Sol-Gel Science and Technology 2/2018 Zur Ausgabe

Original Paper: Functional coatings, thin films and membranes (including deposition techniques)

Water-soluble polymers as chelating agents for the deposition of Er3+/Yb3+:LiNbO3 waveguiding films

Original Paper: Sol-gel and hybrid materials for optical, photonic and optoelectronic applications

Dependence of dielectric and photovoltaic properties of Pt/PLZT/LNO on the temperature and La doping content

Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)

In situ template synthesis of SnO nanoparticles on nickel foam with high electrochemical performance

Original Paper: Functional coatings, thin films and membranes (including deposition techniques)

Rare earth Eu3+ co-doped AZO thin films prepared by nebulizer spray pyrolysis technique for optoelectronics

Original Paper: Industrial and technological applications of sol-gel and hybrid materials

Microstructure and thermal shock behavior of sol–gel introduced ZrB2 reinforced SiBCN matrix

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.