Skip to main content
Erschienen in: Journal of Sol-Gel Science and Technology 1/2019

09.10.2018 | Brief Communication: Sol-gel and hybrid materials for energy, environment and building applications

Nitrogen-doped porous carbon via ammonothermal carbonization for supercapacitors

verfasst von: Florian Schipper, Shiori Kubo, Tim-Patrick Fellinger

Erschienen in: Journal of Sol-Gel Science and Technology | Ausgabe 1/2019

Einloggen

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this study we demonstrate a cheap and sustainable ammonothermal approach towards nitrogen-doped porous carbons. Sodium borate (borax) is employed as a catalyst during the synthesis resulting in the formation of small interconnected primary particles of <100 nm in size. Microporosity is created in these nitrogen-doped, ammonothermal carbon samples by a synchronous activation and post carbonization procedure at 850 °C, while the interconnected primary particles offer larger interstitial void spaces including mesopores. Variation of the starting ammonia concentration allows for the facile adjustment of the final nitrogen content, reaching up to 7 wt.% after post carbonization. Electrochemical characterization is carried out in two and three electrode modes by means of cyclic voltammetry and galvanostatic cycling at different scan rates and current densities, respectively. The sample prepared at a high glucose-to-ammonia ratio shows high specific capacitance of 185 and 144 F g−1 at 0.2 and 20 A g−1, respectively (271 F g−1 in a three electrode mode at 1 A g−1). All samples demonstrate a very stable capacitance over the tested 5000 cycles at 10 A g−1 with no degradation and an excellent coulombic efficiency of >99%. Comparison of different pore systems indicates that a continuous pore size distribution may explain improved rate performances.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Falco C, Sieben JM, Brun N et al. (2013) Hydrothermal carbons from hemicellulose-derived aqueous hydrolysis products as electrode materials for supercapacitors. ChemSusChem 6:374–382CrossRef Falco C, Sieben JM, Brun N et al. (2013) Hydrothermal carbons from hemicellulose-derived aqueous hydrolysis products as electrode materials for supercapacitors. ChemSusChem 6:374–382CrossRef
2.
Zurück zum Zitat Frackowiak E (2007) Carbon materials for supercapacitor application. Phys Chem Chem Phys 9:1774–1785CrossRef Frackowiak E (2007) Carbon materials for supercapacitor application. Phys Chem Chem Phys 9:1774–1785CrossRef
3.
Zurück zum Zitat Frackowiak E, Béguin F (2001) Carbon materials for the electrochemical storage of energy in capacitors. Carbon N Y 39:937–950CrossRef Frackowiak E, Béguin F (2001) Carbon materials for the electrochemical storage of energy in capacitors. Carbon N Y 39:937–950CrossRef
4.
Zurück zum Zitat Winter M, Brodd RJ (2004) What are batteries, fuel cells, and supercapacitors? Chem Rev 104:4245–4270CrossRef Winter M, Brodd RJ (2004) What are batteries, fuel cells, and supercapacitors? Chem Rev 104:4245–4270CrossRef
5.
Zurück zum Zitat Cao Y, Zhu M, Li P et al. (2013) Boosting supercapacitor performance of carbon fibres using electrochemically reduced graphene oxide additives. Phys Chem Chem Phys 15:19550–19556CrossRef Cao Y, Zhu M, Li P et al. (2013) Boosting supercapacitor performance of carbon fibres using electrochemically reduced graphene oxide additives. Phys Chem Chem Phys 15:19550–19556CrossRef
6.
Zurück zum Zitat Harrison D, Qiu F, Fyson J et al. (2013) A coaxial single fibre supercapacitor for energy storage. Phys Chem Chem Phys 15:12215–12219CrossRef Harrison D, Qiu F, Fyson J et al. (2013) A coaxial single fibre supercapacitor for energy storage. Phys Chem Chem Phys 15:12215–12219CrossRef
7.
Zurück zum Zitat Zhang LL, Zhao XS (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38:2520–2531CrossRef Zhang LL, Zhao XS (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38:2520–2531CrossRef
8.
Zurück zum Zitat Kötz R, Dietrich P, Hahn M et al. (2005) Supercaps–Eigenschaften und Fahrzeuganwendungen. VDI Ber 1874:175–188 Kötz R, Dietrich P, Hahn M et al. (2005) Supercaps–Eigenschaften und Fahrzeuganwendungen. VDI Ber 1874:175–188
9.
Zurück zum Zitat Arico AS, Bruce P, Scrosati B et al. (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4:366–377CrossRef Arico AS, Bruce P, Scrosati B et al. (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4:366–377CrossRef
10.
Zurück zum Zitat Fedorov FS, Linnemann J, Tschulik K et al. (2013) Capacitance performance of cobalt hydroxide-based capacitors with utilization of near-neutral electrolytes. Electrochim Acta 90:166–170CrossRef Fedorov FS, Linnemann J, Tschulik K et al. (2013) Capacitance performance of cobalt hydroxide-based capacitors with utilization of near-neutral electrolytes. Electrochim Acta 90:166–170CrossRef
11.
Zurück zum Zitat Frackowiak E, Lota G, Machnikowski J et al. (2006) Optimisation of supercapacitors using carbons with controlled nanotexture and nitrogen content. Electrochim Acta 51:2209–2214CrossRef Frackowiak E, Lota G, Machnikowski J et al. (2006) Optimisation of supercapacitors using carbons with controlled nanotexture and nitrogen content. Electrochim Acta 51:2209–2214CrossRef
12.
Zurück zum Zitat Qiu Y, Zhang X, Yang S (2011) High performance supercapacitors based on highly conductive nitrogen-doped graphene sheets. Phys Chem Chem Phys 13:12554–12558CrossRef Qiu Y, Zhang X, Yang S (2011) High performance supercapacitors based on highly conductive nitrogen-doped graphene sheets. Phys Chem Chem Phys 13:12554–12558CrossRef
13.
Zurück zum Zitat Sevilla M, Yu L, Zhao L et al. (2014) Surface modification of CNTs with N-doped carbon: an effective way of enhancing their performance in supercapacitors. ACS Sustain Chem Eng 2:1049–1055CrossRef Sevilla M, Yu L, Zhao L et al. (2014) Surface modification of CNTs with N-doped carbon: an effective way of enhancing their performance in supercapacitors. ACS Sustain Chem Eng 2:1049–1055CrossRef
14.
Zurück zum Zitat Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854CrossRef Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854CrossRef
15.
Zurück zum Zitat Hu B, Wang K, Wu L et al. (2010) Engineering carbon materials from the hydrothermal carbonization process of biomass. Adv Mater 22:813–828CrossRef Hu B, Wang K, Wu L et al. (2010) Engineering carbon materials from the hydrothermal carbonization process of biomass. Adv Mater 22:813–828CrossRef
16.
Zurück zum Zitat Titirici M-M, Antonietti M (2010) Chemistry and materials options of sustainable carbon materials made by hydrothermal carbonization. Chem Soc Rev 39:103–116CrossRef Titirici M-M, Antonietti M (2010) Chemistry and materials options of sustainable carbon materials made by hydrothermal carbonization. Chem Soc Rev 39:103–116CrossRef
17.
Zurück zum Zitat Baccile N, Antonietti M, Titirici M-M (2010) One-step hydrothermal synthesis of nitrogen-doped nanocarbons: albumine directing the carbonization of glucose. ChemSusChem 3:246–253CrossRef Baccile N, Antonietti M, Titirici M-M (2010) One-step hydrothermal synthesis of nitrogen-doped nanocarbons: albumine directing the carbonization of glucose. ChemSusChem 3:246–253CrossRef
18.
Zurück zum Zitat Braghiroli FL, Fierro V, Izquierdo MT et al. (2012) Nitrogen-doped carbon materials produced from hydrothermally treated tannin. Carbon N Y 50:5411–5420CrossRef Braghiroli FL, Fierro V, Izquierdo MT et al. (2012) Nitrogen-doped carbon materials produced from hydrothermally treated tannin. Carbon N Y 50:5411–5420CrossRef
19.
Zurück zum Zitat White RJ, Yoshizawa N, Antonietti M et al. (2011) A sustainable synthesis of nitrogen-doped carbon aerogels. Green Chem 13:2428–2434CrossRef White RJ, Yoshizawa N, Antonietti M et al. (2011) A sustainable synthesis of nitrogen-doped carbon aerogels. Green Chem 13:2428–2434CrossRef
20.
Zurück zum Zitat Wohlgemuth S-A, Fellinger T-P, Jaker P et al. (2013) Tunable nitrogen-doped carbon aerogels as sustainable electrocatalysts in the oxygen reduction reaction. J Mater Chem A 1:4002–4009CrossRef Wohlgemuth S-A, Fellinger T-P, Jaker P et al. (2013) Tunable nitrogen-doped carbon aerogels as sustainable electrocatalysts in the oxygen reduction reaction. J Mater Chem A 1:4002–4009CrossRef
21.
Zurück zum Zitat Yang H, Yuan Y, Tsang SCE (2012) Nitrogen-enriched carbonaceous materials with hierarchical micro-mesopore structures for efficient CO2 capture. Chem Eng J 185–186:374–379CrossRef Yang H, Yuan Y, Tsang SCE (2012) Nitrogen-enriched carbonaceous materials with hierarchical micro-mesopore structures for efficient CO2 capture. Chem Eng J 185–186:374–379CrossRef
22.
Zurück zum Zitat Zhao L, Baccile N, Gross S et al. (2010) Sustainable nitrogen-doped carbonaceous materials from biomass derivatives. Carbon N Y 48:3778–3787CrossRef Zhao L, Baccile N, Gross S et al. (2010) Sustainable nitrogen-doped carbonaceous materials from biomass derivatives. Carbon N Y 48:3778–3787CrossRef
23.
Zurück zum Zitat White RJ, Antonietti M, Titirici MM (2009) Naturally inspired nitrogen doped porous carbon. J Mater Chem 19:8645–8650CrossRef White RJ, Antonietti M, Titirici MM (2009) Naturally inspired nitrogen doped porous carbon. J Mater Chem 19:8645–8650CrossRef
24.
Zurück zum Zitat Fellinger T-P, White RJ, Titirici M-M et al. (2012) Borax-mediated formation of carbon aerogels from glucose. Adv Funct Mater 22:3254–3260CrossRef Fellinger T-P, White RJ, Titirici M-M et al. (2012) Borax-mediated formation of carbon aerogels from glucose. Adv Funct Mater 22:3254–3260CrossRef
25.
Zurück zum Zitat Ståhlberg T, Rodriguez-Rodriguez S, Fristrup P et al. (2011) Metal-free dehydration of glucose to 5-(hydroxymethyl)furfural in ionic liquids with boric acid as a promoter. Chem A Eur J 17:1456–1464CrossRef Ståhlberg T, Rodriguez-Rodriguez S, Fristrup P et al. (2011) Metal-free dehydration of glucose to 5-(hydroxymethyl)furfural in ionic liquids with boric acid as a promoter. Chem A Eur J 17:1456–1464CrossRef
26.
Zurück zum Zitat Hoydonckx HE, Van Rhijn WM, Van Rhijn W et al. (2000) Furfural and derivatives. In: Bellussi G, Bohnet M (eds) Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Hoydonckx HE, Van Rhijn WM, Van Rhijn W et al. (2000) Furfural and derivatives. In: Bellussi G, Bohnet M (eds) Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
27.
Zurück zum Zitat Watanabe M, Aizawa Y, Iida T et al. (2005) Glucose reactions with acid and base catalysts in hot compressed water at 473 K. Carbohydr Res 340:1925–1930CrossRef Watanabe M, Aizawa Y, Iida T et al. (2005) Glucose reactions with acid and base catalysts in hot compressed water at 473 K. Carbohydr Res 340:1925–1930CrossRef
28.
Zurück zum Zitat Latham KG, Jambu G, Joseph SD et al. (2013) Nitrogen doping of hydrochars produced hydrothermal treatment of sucrose in H2O, H2SO4, and NaOH. ACS Sustain Chem Eng 2:755–764 Latham KG, Jambu G, Joseph SD et al. (2013) Nitrogen doping of hydrochars produced hydrothermal treatment of sucrose in H2O, H2SO4, and NaOH. ACS Sustain Chem Eng 2:755–764
29.
Zurück zum Zitat Esposito D, Antonietti M (2013) Chemical conversion of sugars to lactic acid by alkaline hydrothermal processes. ChemSusChem 6:989–992CrossRef Esposito D, Antonietti M (2013) Chemical conversion of sugars to lactic acid by alkaline hydrothermal processes. ChemSusChem 6:989–992CrossRef
30.
Zurück zum Zitat Zhang D, Hao Y, Ma Y et al. (2012) Hydrothermal synthesis of highly nitrogen-doped carbon powder. Appl Surf Sci 258:2510–2514CrossRef Zhang D, Hao Y, Ma Y et al. (2012) Hydrothermal synthesis of highly nitrogen-doped carbon powder. Appl Surf Sci 258:2510–2514CrossRef
31.
Zurück zum Zitat Glomb MA, Monnier VM (1995) Mechanism of protein modification by glyoxal and glycolaldehyde, reactive intermediates of the Maillard reaction. J Biol Chem 270:10017–10026CrossRef Glomb MA, Monnier VM (1995) Mechanism of protein modification by glyoxal and glycolaldehyde, reactive intermediates of the Maillard reaction. J Biol Chem 270:10017–10026CrossRef
32.
Zurück zum Zitat Hodge JE, Rist CE (1953) The Amadori rearrangement under new conditions and its significance for non-enzymatic browning reactions. J Am Chem Soc 75:316–322CrossRef Hodge JE, Rist CE (1953) The Amadori rearrangement under new conditions and its significance for non-enzymatic browning reactions. J Am Chem Soc 75:316–322CrossRef
33.
Zurück zum Zitat Banik BK, Banik I, Renteria M et al. (2005) A straightforward highly efficient Paal–Knorr synthesis of pyrroles. Tetrahedron Lett 46:2643–2645CrossRef Banik BK, Banik I, Renteria M et al. (2005) A straightforward highly efficient Paal–Knorr synthesis of pyrroles. Tetrahedron Lett 46:2643–2645CrossRef
34.
Zurück zum Zitat Ismagilov ZR, Shalagina AE, Podyacheva OY et al. (2009) Structure and electrical conductivity of nitrogen-doped carbon nanofibers. Carbon N Y 47:1922–1929CrossRef Ismagilov ZR, Shalagina AE, Podyacheva OY et al. (2009) Structure and electrical conductivity of nitrogen-doped carbon nanofibers. Carbon N Y 47:1922–1929CrossRef
35.
Zurück zum Zitat Falco C (2012) Sustainable biomass-derived hydrothermal carbons for energy applications. Thesis, Universitätsbibliothek Univesität, Potsdam, Germany Falco C (2012) Sustainable biomass-derived hydrothermal carbons for energy applications. Thesis, Universitätsbibliothek Univesität, Potsdam, Germany
36.
Zurück zum Zitat Reich S, Thomsen C (2004) Raman spectroscopy of graphite. Philos Trans A Math Phys Eng Sci 362:2271–2288 Reich S, Thomsen C (2004) Raman spectroscopy of graphite. Philos Trans A Math Phys Eng Sci 362:2271–2288
37.
Zurück zum Zitat Sevilla M, Fuertes AB (2009) Chemical and structural properties of carbonaceous products obtained by hydrothermal carbonization of saccharides. Chem A Eur J 15:4195–4203CrossRef Sevilla M, Fuertes AB (2009) Chemical and structural properties of carbonaceous products obtained by hydrothermal carbonization of saccharides. Chem A Eur J 15:4195–4203CrossRef
38.
Zurück zum Zitat Fan L-Z, Qiao S, Song W et al. (2013) Effects of the functional groups on the electrochemical properties of ordered porous carbon for supercapacitors. Electrochim Acta 105:299–304CrossRef Fan L-Z, Qiao S, Song W et al. (2013) Effects of the functional groups on the electrochemical properties of ordered porous carbon for supercapacitors. Electrochim Acta 105:299–304CrossRef
39.
Zurück zum Zitat Stollera MD, Ruoff RS (2010) Best practice methods for determining an electrode material's performance for ultracapacitors Energy Environ. Sci. 3:1294–1301CrossRef Stollera MD, Ruoff RS (2010) Best practice methods for determining an electrode material's performance for ultracapacitors Energy Environ. Sci. 3:1294–1301CrossRef
Metadaten
Titel
Nitrogen-doped porous carbon via ammonothermal carbonization for supercapacitors
verfasst von
Florian Schipper
Shiori Kubo
Tim-Patrick Fellinger
Publikationsdatum
09.10.2018
Verlag
Springer US
Erschienen in
Journal of Sol-Gel Science and Technology / Ausgabe 1/2019
Print ISSN: 0928-0707
Elektronische ISSN: 1573-4846
DOI
https://doi.org/10.1007/s10971-018-4837-1

Weitere Artikel der Ausgabe 1/2019

Journal of Sol-Gel Science and Technology 1/2019 Zur Ausgabe

Original Paper: Functional coatings, thin films and membranes (including deposition techniques)

Metal-organic framework thin films from copper hydroxide nano-assemblies

Brief Communication: Sol-gel and hybrid materials with surface modification for applications

Carbon gels with tuned properties for catalysis and energy storage

Original Paper: Sol-gel and hybrid materials for optical, photonic and optoelectronic applications

Transparent SiO2-GdF3 sol–gel nano-glass ceramics for optical applications

Brief Communication: Functional coatings, thin films, and membranes (including deposition techniques)

Bacterial cellulose–SiO2@TiO2 organic–inorganic hybrid membranes with self-cleaning properties

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.