Skip to main content
Log in

DSC monitoring of supermolecular structure damage of polyethylene products

Academia and industry challenges

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Investigated materials were produced from polyethylene of low density (PE-LD) and a filler: carbon black or chalk. A part of the samples was kept in ambient temperature over several months in order to study the effect of material ageing. The qualitative conclusions were drawn based on a precise analysis of shape of DSC curves and the basic investigations of PE morphologies known from literature. The influence of the thermal history and the filler contents on the amount and kind of crystal phase was established. Additionally, the effect of the measurement technique, in our case it was positron annihilation lifetime spectroscopy (PALS), on the morphological feature changes was found. The paper serves selected examples of problems solved by DSC. However, from the other hand, the authors discuss critically the opportunity given by this method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B Wunderlich et al. (1981) Thermal analysis of polymeric materials Academic Press New York Chapter 2

    Google Scholar 

  2. InstitutionalAuthorNameHanser Publisher et al. (1994) Calorimetry and thermal analysis of polymers Hanser Publisher Munich

    Google Scholar 

  3. VBF Mathot RL Scherrenberg TFJ Pijpers (1998) Polymer 39 4541 Occurrence Handle10.1016/S0032-3861(97)10306-8 Occurrence Handle1:CAS:528:DyaK1cXkvVyktbc%3D

    Article  CAS  Google Scholar 

  4. VBF Mathot B Goderis H Reynaers (2003) Fibr. Text. Easter Europe 11 20

    Google Scholar 

  5. YK Godovski et al. (1992) Thermophysical properties of polymers Springer-Verlag Berlin

    Google Scholar 

  6. A Danch W Osoba (2003) J. Therm. Anal. Cal. 72 641 Occurrence Handle10.1023/A:1024546204223 Occurrence Handle1:CAS:528:DC%2BD3sXltVWhsL0%3D

    Article  CAS  Google Scholar 

  7. WW Sułkowski J Borek A Danch A Radoń A Sułkowska J Ossowska G Teborowicz A Bernatek (2004) J. Therm. Anal. Cal. 77 363 Occurrence Handle10.1023/B:JTAN.0000033220.33399.7d

    Article  Google Scholar 

  8. Z Zugenmaier C Cantow (1969) Kolloid Z. Z. Polymere 230 229 Occurrence Handle10.1007/BF01521985 Occurrence Handle1:CAS:528:DyaF1MXhtFGlt7k%3D

    Article  CAS  Google Scholar 

  9. L Mandelkern JM Price M Goplan JG Fatou (1966) J. Polymer Sci. 4 385 Occurrence Handle10.1002/pol.1966.110040702 Occurrence Handle1:CAS:528:DyaF28Xkt1WhsL4%3D

    Article  CAS  Google Scholar 

  10. AV Tobolsky DW Carlson N Indicator (1961) J. Polymer Sci. 54 175 Occurrence Handle10.1002/pol.1961.1205415913 Occurrence Handle1:CAS:528:DyaF38XjvFSrsQ%3D%3D

    Article  CAS  Google Scholar 

  11. K Kobayashi T Nagasawa (1966) J. Polymer Sci. Part C 15 163 Occurrence Handle10.1002/polc.5070150113

    Article  Google Scholar 

  12. J Varga J Menczel A Solti (1979) J. Thermal Anal. 17 333 Occurrence Handle10.1007/BF01914024

    Article  Google Scholar 

  13. MS Graff RH Boyd (1994) Polymer 35 1797 Occurrence Handle10.1016/0032-3861(94)90967-9 Occurrence Handle1:CAS:528:DyaK2cXjt1Cmtbo%3D

    Article  CAS  Google Scholar 

  14. J Borek W Osoba (2001) Polymer 42 2901 Occurrence Handle10.1016/S0032-3861(00)00687-X Occurrence Handle1:CAS:528:DC%2BD3MXhsFehsbY%3D

    Article  CAS  Google Scholar 

  15. N Billon JM Haudin (1994) J. Thermal Anal. 42 679 Occurrence Handle1:CAS:528:DyaK2cXntVWktbc%3D

    CAS  Google Scholar 

  16. N Billon C Magnet JM Haudin D Lefebvre (1994) Colloid Polym. Sci. 272 633 Occurrence Handle10.1007/BF00659278 Occurrence Handle1:CAS:528:DyaK2cXltlGitLo%3D

    Article  CAS  Google Scholar 

  17. CT Vijayakumar H Kothandaraman (1987) Thermochim. Acta 118 159 Occurrence Handle10.1016/0040-6031(87)80080-1 Occurrence Handle1:CAS:528:DyaL2sXmtlOlt7g%3D

    Article  CAS  Google Scholar 

  18. SP Westphal TK Ling L Woo (1996) Thermochim. Acta 272 181 Occurrence Handle10.1016/0040-6031(95)02614-2 Occurrence Handle1:CAS:528:DyaK2MXpslKqsbs%3D

    Article  CAS  Google Scholar 

  19. T Tsukame Y Ehara Y Shimizu M Kutsuzawa H Saitoh Y Shibasaki (1997) Thermochim. Acta 299 27 Occurrence Handle10.1016/S0040-6031(97)00132-9 Occurrence Handle1:CAS:528:DyaK2sXlvFSnt7Y%3D

    Article  CAS  Google Scholar 

  20. CA Fonseca IR Harrison (1998) Thermochim. Acta 313 37 Occurrence Handle10.1016/S0040-6031(97)00465-6 Occurrence Handle1:CAS:528:DyaK1cXhtVCqtL8%3D

    Article  CAS  Google Scholar 

  21. CC Puig (2001) Polymer 42 6579 Occurrence Handle10.1016/S0032-3861(01)00102-1 Occurrence Handle1:CAS:528:DC%2BD3MXivFaqsL4%3D

    Article  CAS  Google Scholar 

  22. J Borek W Osoba (1998) J. Polym. Sci. Part B 36 1839 Occurrence Handle10.1002/(SICI)1099-0488(199808)36:11<1839::AID-POLB5>3.0.CO;2-L Occurrence Handle1:CAS:528:DyaK1cXksFKgsb0%3D

    Article  CAS  Google Scholar 

  23. W Osoba (1999) Acta Phys. Pol. A. 95 632 Occurrence Handle1:CAS:528:DyaK1MXjtFektLY%3D

    CAS  Google Scholar 

  24. W Osoba (2001) Acta Phys. Pol. A. 99 447 Occurrence Handle1:CAS:528:DC%2BD3MXjtFSitL4%3D

    CAS  Google Scholar 

  25. A Danch W Osoba (2004) J. Mater. Proc. Techn. 155–156 1428 Occurrence Handle10.1016/j.jmatprotec.2004.04.234 Occurrence Handle1:CAS:528:DC%2BD2cXhtVKmurjN

    Article  CAS  Google Scholar 

  26. A Danch W Osoba F Stelzer (2003) Eur. Polym. J. 39 2051 Occurrence Handle10.1016/S0014-3057(03)00132-0 Occurrence Handle1:CAS:528:DC%2BD3sXnt1Ggt74%3D

    Article  CAS  Google Scholar 

  27. A Danch (1998) J. Thermal Anal. 54 151 Occurrence Handle10.1023/A:1010125104230 Occurrence Handle1:CAS:528:DyaK1MXktFekuw%3D%3D

    Article  CAS  Google Scholar 

  28. A Danch K Lohner M Ungerank F Stelzer (1998) J. Thermal Anal. 54 161 Occurrence Handle10.1023/A:1010177121068 Occurrence Handle1:CAS:528:DyaK1MXktFertg%3D%3D

    Article  CAS  Google Scholar 

  29. A Danch (2001) J. Therm. Anal. Cal. 65 525 Occurrence Handle10.1023/A:1017989323772 Occurrence Handle1:CAS:528:DC%2BD3MXnt1Oqu7o%3D

    Article  CAS  Google Scholar 

  30. B Wunderlich et al. (1980) Macromolecular physics Academic Press New York Vol. 3

    Google Scholar 

  31. A. Danch – unpublished data.

  32. M Kozak A Danch W Osoba L Domka F Stelzer S Jurga (2004) Polym. Polym. Compos. 12 409 Occurrence Handle1:CAS:528:DC%2BD2cXosV2hsL0%3D

    CAS  Google Scholar 

  33. A Danch W Osoba (2004) J. Therm. Anal. Cal. 78 923 Occurrence Handle1:CAS:528:DC%2BD2cXhtVGmt7vK

    CAS  Google Scholar 

  34. InstitutionalAuthorNameAcademic Press et al. (1972) The radiation chemistry of macromolecules Academic Press New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danch A..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Danch, A., Osoba, W. DSC monitoring of supermolecular structure damage of polyethylene products. J Therm Anal Calorim 84, 331–337 (2006). https://doi.org/10.1007/s10973-005-6846-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-005-6846-x

Keywords

Navigation