Skip to main content
Log in

Macro-defect-free (MDF) cements

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

MDF cements using the blends of sulfoaluminate ferrite belite (SAFB) clinkers and ordinary Portland cement (OPC) in mass ratio 85:15 with Al2O3, and starch, polyphosphate (poly-P) or butylacrylate/acrylonitrile were subjected to moist atmospheres (ambient, 52 and 100% relative humidity (RH)) to investigate their moisture resistance. Their chemical, thermal, electron microscopic and magnetic properties were also studied before and after moisture attack. Butylacrylate/acrylonitrile (BA/AN) copolymer was found to be the most suitable for MDF cement synthesis since the sample containing BA/AN showed the best moisture resistant. There are significant differences in scanning electron microscopy (SEM) of MDF cements before and after moisture attack and with different polymers. New data on the paramagnetic nonhysteresis magnetization curves for all the samples are observed. The MDF cements synthesized from SAFB clinker with dissolved poly-P give the best signal/noise (S/N) ratio. Three main temperature regions on TG curves of both series of MDF cements are observed. In the inter-phase section of MDF cements, the content of classical cement hydrates decomposing by 250°C is increased. Combustion of organic material took place by 550°C. In the temperature range 550-800°C, the decomposition of CaCO3 occurs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K Kendal (1983) Philos. Trans. R. Soc. London A310 139

    Google Scholar 

  2. J. D. Birchall, A. J. Howard, K. Kendal and J. H. Raistrick, European Pat. Specification, 6, 0055035, B1, 1998.

  3. M Delucchi G Cerisola (2001) Constr. Build. Mater 15 351

    Google Scholar 

  4. GKD Pushpalal (2000) J. Mater. Sci. 35 981 Occurrence Handle10.1023/A:1004771029440 Occurrence Handle1:CAS:528:DC%2BD3cXhsF2hur8%3D

    Article  CAS  Google Scholar 

  5. SC Mojumdar L Raki (2005) J. Therm. Anal. Cal. 82 89 Occurrence Handle10.1007/s10973-005-0846-8 Occurrence Handle1:CAS:528:DC%2BD2MXht1KgsbbP

    Article  CAS  Google Scholar 

  6. CY Rha JW Seong CE Kim SK Lee WK Kim (1999) J. Mater. Sci. 34 4653 Occurrence Handle10.1023/A:1004689711139 Occurrence Handle1:CAS:528:DyaK1MXmslahtL8%3D

    Article  CAS  Google Scholar 

  7. S. C. Mojumdar and L. Raki, Res. J. Chem. Environ., submitted.

  8. CK Park (1998) J. Cer. Soc. Jap. 106 268 Occurrence Handle1:CAS:528:DyaK1cXitVOlur0%3D

    CAS  Google Scholar 

  9. JA Lewis MA Boyer (1995) Adv. Cem. Bas. Mater. 2 2 Occurrence Handle1:CAS:528:DyaK2MXjslOqtro%3D

    CAS  Google Scholar 

  10. M Tan J Lu K Wu (1994) Cem. Concr. Res. 24 1185 Occurrence Handle1:CAS:528:DyaK2cXls1altbo%3D

    CAS  Google Scholar 

  11. PG Desai JA Lewis DP Bentz (1994) J. Mater. Sci. 29 711 Occurrence Handle10.1007/BF00354002

    Article  Google Scholar 

  12. IAA Ibrahim HH ElSersy MF Abadir (2004) J. Therm. Anal. Cal. 76 713 Occurrence Handle1:CAS:528:DC%2BD2cXkvFGgtbg%3D

    CAS  Google Scholar 

  13. M Drábik L Gáliková KG Varshney MA Quraishi (2004) J. Therm. Anal. Cal. 76 91 Occurrence Handle10.1023/B:JTAN.0000027807.89788.d4

    Article  Google Scholar 

  14. J Dweck PF Ferreira da Silva R Silva Aderne PM Büchler FK Cartledge (2003) J. Therm. Anal. Cal. 71 821 Occurrence Handle10.1023/A:1023322108940 Occurrence Handle1:CAS:528:DC%2BD3sXjvVylur0%3D

    Article  CAS  Google Scholar 

  15. S. C. Mojumdar and L. Raki, J. Therm. Anal. Cal., submitted.

  16. W Roszczynialski W Nocuń-Wczelik (2004) J. Therm. Anal. Cal. 77 151 Occurrence Handle10.1023/B:JTAN.0000033198.87490.57 Occurrence Handle1:CAS:528:DC%2BD2cXlt1ynt78%3D

    Article  CAS  Google Scholar 

  17. J Podìbradská R Černý J Drchalová P Rovnaníková J Šesták (2004) J. Therm. Anal. Cal. 77 85 Occurrence Handle10.1023/B:JTAN.0000033191.59911.4d

    Article  Google Scholar 

  18. DS Klimesch M Gutovic A Ray (2004) J. Therm. Anal. Cal. 75 197 Occurrence Handle10.1023/B:JTAN.0000017342.57742.b8 Occurrence Handle1:CAS:528:DC%2BD2cXhsFaisrc%3D

    Article  CAS  Google Scholar 

  19. Z Pytel (2004) J. Therm. Anal. Cal. 77 159 Occurrence Handle10.1023/B:JTAN.0000033199.47106.72 Occurrence Handle1:CAS:528:DC%2BD2cXlt1yntrs%3D

    Article  CAS  Google Scholar 

  20. TE Stepkowska JL Pérez-Rodríguez MJ Sayagués JM Martínez-Blanes (2003) J. Therm. Anal. Cal. 73 247 Occurrence Handle1:CAS:528:DC%2BD3sXmt1emt70%3D

    CAS  Google Scholar 

  21. T Grounds DV Nowell FW Wilburn (2003) J. Therm. Anal. Cal. 72 181 Occurrence Handle10.1023/A:1023928021602 Occurrence Handle1:CAS:528:DC%2BD3sXktVymtLY%3D

    Article  CAS  Google Scholar 

  22. J Sawków W Nocuń-Wczelik (2003) J. Therm. Anal. Cal. 74 451 Occurrence Handle10.1023/B:JTAN.0000005180.83880.1c

    Article  Google Scholar 

  23. B Pacewska I Wilińska M Bukowska G Blonkowski W Nocuń-Wczelik (2004) J. Therm. Anal. Cal. 77 133 Occurrence Handle10.1023/B:JTAN.0000033196.30760.af Occurrence Handle1:CAS:528:DC%2BD2cXlt1ynt7s%3D

    Article  CAS  Google Scholar 

  24. S. C. Mojumdar, L. Raki and D. Wang, Polym. Eng. Sci., submitted.

  25. M Bukowska B Pacewska I Wilińska (2003) J. Therm. Anal. Cal. 74 931 Occurrence Handle10.1023/B:JTAN.0000011025.26715.f5 Occurrence Handle1:CAS:528:DC%2BD2cXhtFOltw%3D%3D

    Article  CAS  Google Scholar 

  26. C Evju (2003) J. Therm. Anal. Cal. 71 829 Occurrence Handle10.1023/A:1023374125778 Occurrence Handle1:CAS:528:DC%2BD3sXjvVyluro%3D

    Article  CAS  Google Scholar 

  27. K Rajczyk E Giergiczny MA Glinicki (2004) J. Therm. Anal. Cal. 77 165 Occurrence Handle10.1023/B:JTAN.0000033200.56927.c7 Occurrence Handle1:CAS:528:DC%2BD2cXlt1yntrk%3D

    Article  CAS  Google Scholar 

  28. PY Yan F Zheng ZQ Xu (2003) J. Therm. Anal. Cal. 74 201 Occurrence Handle10.1023/A:1026342222825 Occurrence Handle1:CAS:528:DC%2BD3sXosVGgtr8%3D

    Article  CAS  Google Scholar 

  29. M Palou J Majling (2003) J. Therm. Anal. Cal. 71 367 Occurrence Handle10.1023/A:1022823003120 Occurrence Handle1:CAS:528:DC%2BD3sXitVygtb0%3D

    Article  CAS  Google Scholar 

  30. P Myśliński W Precht L Kukiełka P Kamasa K Pietruszka P Małek (2004) J. Therm. Anal. Cal. 77 253

    Google Scholar 

  31. J Strnad J Protivínský D Mazur K Veltruská Z Strnad A Helebrant J Šesták (2004) J. Therm. Anal. Cal. 76 17 Occurrence Handle10.1023/B:JTAN.0000027799.48305.1c Occurrence Handle1:CAS:528:DC%2BD2cXjvFSku74%3D

    Article  CAS  Google Scholar 

  32. SC Mojumdar (2001) J. Therm. Anal. Cal. 64 1133 Occurrence Handle1:CAS:528:DC%2BD3MXlslKqtbc%3D

    CAS  Google Scholar 

  33. M Drabik L Galikova SC Mojumdar (2002) Key Eng. Mater. 206 1867

    Google Scholar 

  34. SC Mojumdar ( 2001) Proceedings of the 29th NATAS Annual Conference on Thermal Analysis and Application ConfEventName29th NATAS Annual Conference on Thermal Analysis and Applications ConfEventLocationSt. Louis, Missouri, USA ConfEventDateSeptember 24-26, 2001 Omnipress Madison

    Google Scholar 

  35. M Drábik SC Mojumdar RCT Slade (2002) Ceramics-Silikaty 46 68

    Google Scholar 

  36. SC Mojumdar (2001) Challenges for Coord. Chemistry in the new century 5 453 Occurrence Handle1:CAS:528:DC%2BD2cXjsFynsbk%3D

    CAS  Google Scholar 

  37. SC Mojumdar A Ray M Drábik A Cigan F Hanic P Capek (2003) Sol. Stat. Phenom. 90 365

    Google Scholar 

  38. SC Mojumdar (2001) Proceedings of 21st Cement and Concrete Science ConfEventName21st Cement and Concrete Science ConfEventDateAugust 30-31, 2001 University of Aberdeen Press Scotland

    Google Scholar 

  39. I Janotka L' Kraj i (1999) Adv. Cem. Res. 11 35 Occurrence Handle1:CAS:528:DyaK1MXisFOhs7Y%3D

    CAS  Google Scholar 

  40. SC Mojumdar I Janotka (2002) Acta Physica Slovaca 52 435 Occurrence Handle1:CAS:528:DC%2BD38Xoslegsbo%3D

    CAS  Google Scholar 

  41. I Janotka L' Kraj i (2000) Bul. Mater. Sci. 23 521 Occurrence Handle1:CAS:528:DC%2BD3MXkslyjtw%3D%3D

    CAS  Google Scholar 

  42. V Zrubec A Cigan J Manka (1994) Physica C 223 90

    Google Scholar 

  43. SC Mojumdar M Drabik (2001) Proceedings of Science of cement and concrete-Kurdowski symposium ConfEventNamecement and concrete-Kurdowski symposium ConfEventLocationCracow, Poland ConfEventDateJune 20-21, 2001 Akapit Scientific Publisher Cracow

    Google Scholar 

  44. SC Mojumdar B Chowdhury KG Varshney K Mazanec (2004) J. Therm. Anal. Cal. 78 135 Occurrence Handle1:CAS:528:DC%2BD2cXns1Olsbo%3D

    CAS  Google Scholar 

  45. H. F. W. Taylor, Cement Chemistry, London, 2nd Edition, 1998, Vol. 1, Chap. 7.

  46. M Drabik SC Mojumdar L Galikova (2000) Cem. Concr. Res. 31 751

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mojumdar S C.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mojumdar, S.C., Mazanec, K. & Drabik, M. Macro-defect-free (MDF) cements . J Therm Anal Calorim 83, 135–139 (2006). https://doi.org/10.1007/s10973-005-7045-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-005-7045-5

Keywords

Navigation