Skip to main content
Log in

The glass transition

Finite size effect

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The subjects of the paper are the mechanism of vitrification and the glass transition, and a definition of the temperature of the glass transition. A comprehensive description of the structural changes occurring in the amorphous phase (‘real’ and ‘semi-ordered’) in a vicinity of the glass transition is presented. One of the major motivation of our studies is to investigate the finite size effect of the glass transition that could be related to the cooperative motion in supercooled liquids. Also, new formula, describing the relaxation time temperature change, is applied in order to better reveal themechanismof the supermolecular formation under different internal and external factors. The results of the basic methods of thermal analysis, obtained for different polymeric systems, were used in this study. The proposed approach let us correlate the thermodynamic and the structural parameters, which are estimated from the experiments, and describe all well known shapes of the DSC traces, which can be recorded in the glass transition region. Based on positron annihilation lifetime spectroscopy and dilatometric results, the significance of the free and the specific volumes for the activation of the relaxing units is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. RJ Roe AE Tonelli (1978) Macromolecules 11 114 Occurrence Handle1:CAS:528:DyaE1cXhtVGqtbk%3D Occurrence Handle10.1021/ma60061a020

    Article  CAS  Google Scholar 

  2. EA DiMarzio F Dowell (1979) J. Appl. Phys. 50 6061 Occurrence Handle1:CAS:528:DyaL3cXit12qsw%3D%3D Occurrence Handle10.1063/1.325794

    Article  CAS  Google Scholar 

  3. A. Danch and W. Osoba, J. Therm. Anal. Cal., DOI: 10.1007/s10973-005-6846-x.

  4. Y Godovsky et al. (1992) Thermophysical Properties of Polymers Springer-Verlag Berlin

    Google Scholar 

  5. A Danch (2005) J. Therm. Anal. Cal. 79 205 Occurrence Handle1:CAS:528:DC%2BD2MXhs1ahtbg%3D Occurrence Handle10.1007/s10973-004-0585-2

    Article  CAS  Google Scholar 

  6. A Danch W Osoba (2003) Rad. Phys. Chem. 68 445 Occurrence Handle1:CAS:528:DC%2BD3sXnt1yhsrg%3D Occurrence Handle10.1016/S0969-806X(03)00202-0

    Article  CAS  Google Scholar 

  7. A Danch (2003) Fibr. Text. Eastern Eur. 11 128

    Google Scholar 

  8. A Danch K Lohner M Ungerank F Stelzer (1998) J. Therm. Anal. Cal. 54 161 Occurrence Handle1:CAS:528:DyaK1MXktFertg%3D%3D Occurrence Handle10.1023/A:1010177121068

    Article  CAS  Google Scholar 

  9. A Danch (1999) J. Therm. Anal. Cal. 56 1097 Occurrence Handle1:CAS:528:DyaK1MXnt1Wnur8%3D Occurrence Handle10.1023/A:1010196726498

    Article  CAS  Google Scholar 

  10. A Danch A Kocot J Zioło F Stelzer (2001) Macromol. Chem. Phys. 202 105 Occurrence Handle1:CAS:528:DC%2BD3MXpsVKkuw%3D%3D Occurrence Handle10.1002/1521-3935(20010101)202:1<105::AID-MACP105>3.0.CO;2-1

    Article  CAS  Google Scholar 

  11. NG McGrum BE Read G Williams et al. (1967) Anelastic and Dielectric Effects in Polymeric Solids J. Wiley New York

    Google Scholar 

  12. DW van Krevelen et al. (1990) Properties of Polymers Elsevier Amsterdam

    Google Scholar 

  13. D Boudouris L Constantinou C Panayiotou (2000) Fluid Phase Equil. 167 1 Occurrence Handle1:CAS:528:DC%2BD3cXptFyqtg%3D%3D Occurrence Handle10.1016/S0378-3812(99)00286-1

    Article  CAS  Google Scholar 

  14. A Danch W Osoba (2006) J. Therm. Anal. Cal. 84 79 Occurrence Handle1:CAS:528:DC%2BD28XjsVOntLs%3D Occurrence Handle10.1007/s10973-005-7162-1

    Article  CAS  Google Scholar 

  15. OE Mogensen et al. (1995) Positron Annihilation in Chemistry Springer-Verlag Berlin

    Google Scholar 

  16. A Danch W Osoba (2003) J. Therm. Anal. Cal. 72 641 Occurrence Handle1:CAS:528:DC%2BD3sXltVWhsL0%3D Occurrence Handle10.1023/A:1024546204223

    Article  CAS  Google Scholar 

  17. A. Danch and W. Osoba, in ‘Condensed Matter Studies with Nuclear Methods’, Proc. XXXVIII Zakopane School of Phys., Cracow 2003, p. 196.

  18. A Danch W Osoba (2004) J. Mater. Process Technol. 155 1428 Occurrence Handle10.1016/j.jmatprotec.2004.04.234

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danch A..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Danch, A. The glass transition. J Therm Anal Calorim 84, 663–668 (2006). https://doi.org/10.1007/s10973-005-7163-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-005-7163-0

Keywords

Navigation