Skip to main content
Log in

Inducing bioactivity in dental porcelain through bioglass®

Changes in thermal behaviour

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Dental materials restore morphology and function of lost or destroyed teeth, but cannot completely rebuild the structural relationship with soft periodontal tissues. The induction of bioactivity on classic dental porcelain can be achieved through the addition of bioactive glass. The aim of this study was to investigate the effect of Bioglass® on the thermal properties of dental porcelain in order to correlate the proportions of mixtures with the changes in thermal properties. Differential thermal analysis was performed in order to determine the characteristic temperatures of the mixtures. The increase of bioactive glass concentration in mixtures induces a shift to lower temperatures of the melting point temperature. This observation is attributed to the substitution of silicon ions by aluminium ions and to the formation of Al–O bond, which is weaker than Si–O bond. Mixtures heated at 950°C were examined also by the transmission electron microscopy (TEM) in order to be studied the microstructure of these samples at this critical temperature. The observed microstructural changes, confirm the process of substitution of Si 4+ ions by Al 3+ ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Van Noot, An Introduction to Dental Materials, 2nd Edition, Mosby 2002

  2. AS Rizkalla DW Jones DB Clarke GC Hall (1996) J. Biomed. Mater. Res. 32 119 Occurrence Handle1:CAS:528:DyaK28XltFGktrs%3D Occurrence Handle10.1002/(SICI)1097-4636(199609)32:1<119::AID-JBM14>3.0.CO;2-H

    Article  CAS  Google Scholar 

  3. E Verne C Vitale Brovarone D Milanese (2000) J. Biomed. Mater. Res. 53 408 Occurrence Handle1:CAS:528:DC%2BD3cXltl2is7g%3D Occurrence Handle10.1002/1097-4636(2000)53:4<408::AID-JBM15>3.0.CO;2-O

    Article  CAS  Google Scholar 

  4. W Holand (1997) J. Non-Cryst. Solids 219 192 Occurrence Handle10.1016/S0022-3093(97)00329-3

    Article  Google Scholar 

  5. E Kontonasaki L Papadopoulou T Zorba E Pavlidou K Paraskevopoulos P Koidis (2003) J. Oral Rehab. 30 1 Occurrence Handle10.1046/j.1365-2842.2003.01072.x

    Article  Google Scholar 

  6. L Papadopoulou E Kontonasaki T Zorba X Chatzistavrou E Pavlidou K Paraskevopoulos S Sklavounos P Koidis (2003) Phys. Status Solidi A 198 65 Occurrence Handle1:CAS:528:DC%2BD3sXmtlymt7s%3D Occurrence Handle10.1002/pssa.200306588

    Article  CAS  Google Scholar 

  7. K Tonsuaadu M Peld V Bender (2003) J. Therm. Anal. Cal. 72 363 Occurrence Handle1:CAS:528:DC%2BD3sXktVymurk%3D Occurrence Handle10.1023/A:1023917113850

    Article  CAS  Google Scholar 

  8. SC Mojumdar J Kozankova J Chocholousek J Majling D Fabryova (2004) J. Therm. Anal. Cal. 78 73 Occurrence Handle1:CAS:528:DC%2BD2cXns1Oltr4%3D Occurrence Handle10.1023/B:JTAN.0000042155.26913.79

    Article  CAS  Google Scholar 

  9. IL Denry JA Holloway SF Rosenstiel (1998) J. Biomed. Mater. Res. 4 398 Occurrence Handle10.1002/(SICI)1097-4636(19980905)41:3<398::AID-JBM9>3.0.CO;2-7

    Article  Google Scholar 

  10. X Chatzistavrou T Zorba E Kontonasaki K Chrissafis P Koidis KM Paraskevopoulos (2004) Phys. Status Solidi A, 201 944

    Google Scholar 

  11. A Aronne S Esposito P Pernice (1997) Mater. Chem. Phys. 51 163 Occurrence Handle1:CAS:528:DyaK2sXmvFWhtL4%3D Occurrence Handle10.1016/S0254-0584(97)80287-8

    Article  CAS  Google Scholar 

  12. E Demirkesen E Maytalman (2001) Ceram. Inter. 27 99 Occurrence Handle1:CAS:528:DC%2BD3cXovFWjtL8%3D Occurrence Handle10.1016/S0272-8842(00)00048-1

    Article  CAS  Google Scholar 

  13. DU Tulyaganov MJ Ribeiro JA Labrincha (2002) Ceram. Inter. 28 515 Occurrence Handle1:CAS:528:DC%2BD38Xjslars7k%3D Occurrence Handle10.1016/S0272-8842(02)00004-4

    Article  CAS  Google Scholar 

  14. IL Denry JA Holloway (2002) J. Biomed. Mater. Res. 63 146 Occurrence Handle1:CAS:528:DC%2BD38Xisl2qtbs%3D Occurrence Handle10.1002/jbm.10122

    Article  CAS  Google Scholar 

  15. N. Ray, Dental Materials Science, Ceramics in Dentistry, 1998, Chapter 10 p. 112.

  16. CB Hong KH Lee (1995) PRICM-2: Proc. of the Second Pacific Rim Int. Conf. on Advanced Mater and Processing The Korean Institute of Met Mater Korea

    Google Scholar 

  17. K Okada N Yamamoto Y Kameshima A Yasumori (2001) J. Am. Ceram. Soc. 84 1591 Occurrence Handle1:CAS:528:DC%2BD3MXlt1aksrc%3D Occurrence Handle10.1111/j.1151-2916.2001.tb00882.x

    Article  CAS  Google Scholar 

  18. K Franks I Abrahams G Georgiou JC Knowles (2001) Biomater. 22 497 Occurrence Handle1:CAS:528:DC%2BD3MXitlCgtg%3D%3D Occurrence Handle10.1016/S0142-9612(00)00207-6

    Article  CAS  Google Scholar 

  19. F Mazzi E Galli G Gottardi (1976) Am. Miner. 61 108 Occurrence Handle1:CAS:528:DyaE28XpvVWiuw%3D%3D

    CAS  Google Scholar 

  20. DC Palmer EKH Salje WW Schmahl (1989) Phys. Chem. Miner. 16 714 Occurrence Handle1:CAS:528:DyaL1MXmtFOhtLY%3D Occurrence Handle10.1007/BF00223322

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. M. Paraskevopoulos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chatzistavrou, X., Chrissafis, K., Polychroniadis, E. et al. Inducing bioactivity in dental porcelain through bioglass® . J Therm Anal Calorim 86, 255–259 (2006). https://doi.org/10.1007/s10973-005-7166-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-005-7166-x

Keywords

Navigation