Skip to main content
Log in

Thermal decomposition properties and compatibility of CL-20, NTO with silicone rubber

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The new polycyclic nitramine 2,4,6,8,10,12-hexanitrohexaazaisowurtzitane (HNIW) has been focused as a considerable amount of research recently on investigating its polymorphs, relative stability, and respective reaction chemistry. It is known as CL-20 popularly, CL-20 is a very high-energy and relatively high oxygen balance value crystalline compound whose method of synthesis and detailed performance data are still classified. 5-oxo-3-nitro-1,2,4-triazole (NTO, or nitrotriazolone) was an insensitive molecule comparison general explosives, and the NTO based polymer bonded explosives (PBX) was a low vulnerability explosive. Both energetic materials are all very important high explosives, which is used in a variety of military formulations widely owing to the properties of high energy and desensitization of PBX, many researchers have demonstrated the usefulness of above two energetic materials in explosive component. In this work, the thermal decomposition characteristics of explosives CL-20 and NTO were studied using thermal analytical techniques (TG, DSC), then the compatibility of above two explosives with silicone rubber, and the decomposition kinetic parameters such as activation energies of decomposition, the frequency factor of the decompose reaction are also evaluated by non-isothermal DSC techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Borman, C&EN, 1994 Jan. 17, 18–24.

  2. HE Kissinger (1957) Anal. Chem. 29 217 Occurrence Handle10.1021/ac60131a045

    Article  Google Scholar 

  3. T Ozawa (1970) J. Thermal Anal. 2 301 Occurrence Handle1:CAS:528:DyaE3MXmvVaisw%3D%3D Occurrence Handle10.1007/BF01911411

    Article  CAS  Google Scholar 

  4. PG Hall (1971) J. Chem. Soc., Faraday Trans., Part 2 67 556 Occurrence Handle1:CAS:528:DyaE3MXhtVersbw%3D Occurrence Handle10.1039/tf9716700556

    Article  CAS  Google Scholar 

  5. M Herrmann W Engel N Eisenreich (1992) Propellants, Explos., Pyrotech. 17 190 Occurrence Handle1:CAS:528:DyaK38Xltlequ7c%3D Occurrence Handle10.1002/prep.19920170409

    Article  CAS  Google Scholar 

  6. ZR Liu CM Yin ChY Wu MN Chang (1986) Propellants, Explos., Pyrotech. 11 11 Occurrence Handle10.1002/prep.19860110104

    Article  Google Scholar 

  7. J Harris (1976) Thermochim. Acta 14 183 Occurrence Handle1:CAS:528:DyaE28XhtVOqtbs%3D Occurrence Handle10.1016/0040-6031(76)80067-6

    Article  CAS  Google Scholar 

  8. MO Hemmila (1982) J. Thermal Anal. 25 135 Occurrence Handle1:CAS:528:DyaL3sXhvVajtLw%3D Occurrence Handle10.1007/BF01913062

    Article  CAS  Google Scholar 

  9. G. Krien, Proceeding of lst Symposium on Chemical Problems Connected with the Stability Explosives, 1967, 66.

  10. D Skinner D Olson A Block-Bolten (1997) Propellants, Explos., Pyrotech. 23 34 Occurrence Handle10.1002/(SICI)1521-4087(199802)23:1<34::AID-PREP34>3.0.CO;2-V

    Article  Google Scholar 

  11. DG Patil TB Brill (1991) Combust. Flame 87 145 Occurrence Handle1:CAS:528:DyaK38XitFOmsr4%3D Occurrence Handle10.1016/0010-2180(91)90164-7

    Article  CAS  Google Scholar 

  12. DG Patil TB Brill (1993) Combust. Flame 92 456 Occurrence Handle1:CAS:528:DyaK3sXhvFClurk%3D Occurrence Handle10.1016/0010-2180(93)90155-V

    Article  CAS  Google Scholar 

  13. M Geetha UR Nair DB Sarwade GM Gore SN Asthana H Singh (2003) J. Therm. Anal. Cal. 73 913 Occurrence Handle1:CAS:528:DC%2BD3sXnsVersL8%3D Occurrence Handle10.1023/A:1025859203860

    Article  CAS  Google Scholar 

  14. S Jirong C Zhaxou H Rongzu X Heming L Fuping (1999) J. Therm. Anal. Cal. 58 257 Occurrence Handle1:CAS:528:DC%2BD3cXhtVShtL8%3D Occurrence Handle10.1023/A:1010190811770

    Article  CAS  Google Scholar 

  15. X Yi H Rongzu Z Tonglai L Fuping (1993) J. Therm. Anal. Cal. 39 41

    Google Scholar 

  16. N Tanaka (1996) J. Therm. Anal. Cal. 46 1021 Occurrence Handle1:CAS:528:DyaK28XjtF2mur0%3D

    CAS  Google Scholar 

  17. G Liptay J Nagy A Borbély-Kuszmann JCh Weil (1987) J. Therm. Anal. Cal. 32 1683 Occurrence Handle1:CAS:528:DyaL1cXktVOktbs%3D

    CAS  Google Scholar 

  18. MF Foltz CL Coon AL Nichols (1994) Propellants, Explos., Pyrotech. 19 19 Occurrence Handle1:CAS:528:DyaK2cXisVyksL8%3D Occurrence Handle10.1002/prep.19940190105

    Article  CAS  Google Scholar 

  19. MF Foltz CL Coon AL Nichols (1994) Propellants, Explos., Pyrotech. 19 133 Occurrence Handle1:CAS:528:DyaK2cXktlyksLg%3D Occurrence Handle10.1002/prep.19940190305

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lee J.-S..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, JS., Jaw, KS. Thermal decomposition properties and compatibility of CL-20, NTO with silicone rubber. J Therm Anal Calorim 85, 463–467 (2006). https://doi.org/10.1007/s10973-005-7325-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-005-7325-0

Keywords

Navigation