Skip to main content
Log in

Thermogravimetry applied to characterization of SBA-15 nanostructured material

  • regular
  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Nanoporous silica with narrow pore size distribution has attracted increasing attention as a novel material for separations and reactions involving large molecules. SBA-15 has been synthesized in an acidic medium using a triblock copolymer as template. In this work, the SBA-15 was synthesized by the hydrothermal treatment at 373 K for 48 h, of a gel with the following overall molar composition: 1.0TEOS:0.017P123:5.7HCl:193H2O, where TEOS is tetraethyl orthosilicate and P123 is poly(ethylene oxide, propylene oxide and 1,4-dioxane). The obtained material was characterized by thermogravimetry, X-ray diffraction, infrared spectroscopy and BET surface area. A kinetic study using the model free model was accomplished in the stage of decomposition of the template (P123). The obtained value of the apparent activation energy was ca. 131 kJ mol–1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. JS Beck JC Vartuli WJ Roth ME Leonowicz CT Kresge KD Schmitt CTW Chu DH Olson EW Sheppard SB McCullen JB Higgins JL Schlenker (1992) J. Am. Chem. Soc. 114 10834 Occurrence Handle10.1021/ja00053a020 Occurrence Handle1:CAS:528:DyaK38Xms1entr8%3D

    Article  CAS  Google Scholar 

  2. CT Kresge ME Leonowicz JS Beck JC Vartuli WJ Roth (1992) Nature 359 710 Occurrence Handle10.1038/359710a0 Occurrence Handle1:CAS:528:DyaK38Xms1entrs%3D

    Article  CAS  Google Scholar 

  3. D Zhao J Feng Q Hou N Melosh GH Fredrickson BF Chmelka G Stucky (1998) Science 279 548 Occurrence Handle10.1126/science.279.5350.548 Occurrence Handle1:CAS:528:DyaK1cXotVOitQ%3D%3D

    Article  CAS  Google Scholar 

  4. P Yang D Zhao D Margolese B Chmelka G Strucky (1998) Nature 396 152 Occurrence Handle10.1038/24132 Occurrence Handle1:CAS:528:DyaK1cXnslalsLc%3D

    Article  CAS  Google Scholar 

  5. T Yamada H Zhou K Asai I Honma (2002) Mater. Lett. 1 3538

    Google Scholar 

  6. GJAA Soler-Illia EL Crepaldi D Grosso C Sanchez (2003) Curr. Opin. in Colloid and Interface Sci. 8 109 Occurrence Handle10.1016/S1359-0294(03)00002-5 Occurrence Handle1:CAS:528:DC%2BD3sXksVKjtL8%3D

    Article  CAS  Google Scholar 

  7. R Ivanova P Alexandridis B Lindmann (2001) Colloids Surf. A 41 183

    Google Scholar 

  8. R Ivanova P Alexandridis B Lindmann (2001) Adv. Colloid Interfare Sci. 351 89

    Google Scholar 

  9. S Vyazovkin AI Lesnikovich (1988) Russ. J. Phys. Chem. 62 2949 Occurrence Handle1:CAS:528:DyaL1MXksFyjsQ%3D%3D

    CAS  Google Scholar 

  10. S Vyazovkin V Goryachko (1992) Thermochim. Acta 194 221 Occurrence Handle10.1016/0040-6031(92)80020-W Occurrence Handle1:CAS:528:DyaK38Xpt1Citg%3D%3D

    Article  CAS  Google Scholar 

  11. S Vyazovkin CA Wright (1990) Thermochim Acta 340 53 Occurrence Handle10.1016/S0040-6031(99)00253-1

    Article  Google Scholar 

  12. SA Araujo M Ionashiro VJ Fernandes AS Araujo (2001) J. Therm. Anal. Cal. 64 801 Occurrence Handle10.1023/A:1011564916290 Occurrence Handle1:CAS:528:DC%2BD3MXkslWlu7s%3D

    Article  CAS  Google Scholar 

  13. D Zhao Q Huo J Feng BF Chmelka GD Stucky (1998) J. Am. Chem. Soc. 120 6024 Occurrence Handle10.1021/ja974025i Occurrence Handle1:CAS:528:DyaK1cXjslKnsbY%3D

    Article  CAS  Google Scholar 

  14. YJ Han JM Kim GD Stucky (2000) Chem. Mater. 12 2068 Occurrence Handle10.1021/cm0010553 Occurrence Handle1:CAS:528:DC%2BD3cXksFGrsb4%3D

    Article  CAS  Google Scholar 

  15. S Brunauer PH Emmett E Teller (1938) J. Amer. Chem. Soc. 60 309 Occurrence Handle10.1021/ja01269a023 Occurrence Handle1:CAS:528:DyaA1cXivFaruw%3D%3D

    Article  CAS  Google Scholar 

  16. EP Barrett LJ Joyner PP Halenda (1951) J. Amer. Chem. Soc. 73 373 Occurrence Handle10.1021/ja01145a126 Occurrence Handle1:CAS:528:DyaG3MXjsVygsg%3D%3D

    Article  CAS  Google Scholar 

  17. D Coutinho AO Acevedo GR Dieckmann KJ Balkus Jr. (2002) Microporous Mesoporous Mater. 1249 1

    Google Scholar 

  18. G Calleja R van Grieken R García JA Melero J Iglesias (2002) J. Molecular Catalysis: Chemical 182–183 215 Occurrence Handle10.1016/S1381-1169(01)00468-X

    Article  Google Scholar 

  19. MJB Souza AOS Silva VJ Fernandes Jr. AS Araujo (2005) J. Therm. Anal. Cal. 79 425 Occurrence Handle10.1007/s10973-005-0078-y Occurrence Handle1:CAS:528:DC%2BD2MXkt1ChsLo%3D

    Article  CAS  Google Scholar 

  20. MJB Souza AOS Silva JMFB Aquino VJ Fernandes Jr. AS Araujo (2004) J. Therm. Anal. Cal. 75 693 Occurrence Handle10.1023/B:JTAN.0000027164.04415.7a Occurrence Handle1:CAS:528:DC%2BD2cXisVKjsb4%3D

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Araujo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coutinho, A.C.S.L.S., Quintella, S.A., Araujo, A.S. et al. Thermogravimetry applied to characterization of SBA-15 nanostructured material. J Therm Anal Calorim 87, 457–461 (2007). https://doi.org/10.1007/s10973-005-7371-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-005-7371-7

Keywords

Navigation