Skip to main content
Log in

Binary mixtures based on polycaprolactone and cellulose derivatives

Thermal degradation and pyrolysis

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Pyrolytic process has a promising potential for the environmentally friendly upgrading of lignocellulosic and plastic waste. Thermogravimetry and pyrolysis-gas chromatography-mass spectrometry (Py-GC/MS) were used to get information about the reactive decomposition of PCL in binary mixtures with microcrystalline cellulose (MC) or sisal fibres (SF). Preliminary thermogravimetric investigation showed that biomass is thermally degraded at lower temperatures than PCL and this process has a predominant influence on the thermal behaviour of the mixtures. Discrepancies between the experimental and predicted TG/DTG profiles were considered as a measurement of the extent of interactions occurring on co-pyrolysis. It was found that reactivity of PCL was slightly increased in PCL-SF binary mixtures. Evolution of acidic products from cellulose and hemicelluloses decomposition may promote PCL degradation in binary mixtures with SF. It seems that the co-pyrolysis process could have potential for the environmentally friendly transformation of biocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. K. Mohanty, M. Misra and G. Hinrichsen, Macromol. Mater. Eng., 276/277 (2000) 1.

    Article  CAS  Google Scholar 

  2. A. P. Mathew and A. Dufresne, Biomacromolecules, 3 (2002) 609.

    Article  CAS  Google Scholar 

  3. M. Vert, J. Feijen, A.-C. Albertsson, G. Scott and E. Chiellini, Eds, Biodegradable Polymers and Plastics, Redwood Press, Royal Society Chemistry, Melksham (Wiltshire) 1992.

    Google Scholar 

  4. C. S. Wu, Polymer, 46 (2005) 147.

    Article  CAS  Google Scholar 

  5. R. Mani and M. Bhattacharya, Eur. Polym. J., 37 (2001) 515.

    Article  CAS  Google Scholar 

  6. C. Bastioli, Polym. Degrad. Stab., 59 (1998) 263.

    Article  CAS  Google Scholar 

  7. C. Bastioli, V. Belotti, L. Del Giudice and G. Gilli, in Biodegradable Polymers and Plastics, M. Vert, Ed., The Royal Society of Chemistry, 1992, p. 101.

  8. C. Bastioli, V. Bellotti, A. Montino, G. Tredici, R. Lombi and R. Ponti, United States Patent 5,412,005, 1995.

  9. R. Ali, S. Iannace and L. Nicolais, Compos. Sci. Technol., 63 (2003) 2217.

    Article  CAS  Google Scholar 

  10. G. Gorrasi, M. Tortora, V. Vittoria, E. Pollet, B. Lepoittevin, M. Alexandre and Ph. Dubois, Polymer, 44 (2003) 2271.

    Article  CAS  Google Scholar 

  11. B. Lepoittevin, M. Devalckenaere, N. Pantoustier, M. Alexandre, D. Kubies, C. Carberg C, R. Jérôme and Ph. Dubois, Polymer, 43 (2002) 4017.

    Article  CAS  Google Scholar 

  12. K. Van de Velde and P. Kiekens, Polymer Testing, 21 (2002) 433.

    Article  Google Scholar 

  13. P. Gatenholm and A. Mathiasson, J. Appl. Polym. Sci., 51 (1994) 1231.

    Article  CAS  Google Scholar 

  14. S. M. Lee, D. Cho, W. H. Park, S. G. Lee, S. O. Han and L. T. Drzal, Compos. Sci. Technol., 65 (2005) 647.

    Article  CAS  Google Scholar 

  15. E. Jakab, M. Blazsó and O. Faix, J. Anal. Appl. Pyrolysis, 58–59 (2001) 49.

    Article  Google Scholar 

  16. E. Jakab, G. Várhegyi and O. Faix, J. Anal. Appl. Pyrolysis, 56 (2000) 273.

    Article  CAS  Google Scholar 

  17. Y. Matsuzawa, M. Ayabe and J. Nishino, Polym. Degrad. Stab., 71 (2001) 435.

    Article  Google Scholar 

  18. L. Sorum, M. G. Gronli and J. E. Hustad, Fuel, 80 (2001) 1217.

    Article  CAS  Google Scholar 

  19. O. Persenaire, M. Alexandre, P. Degee and Ph. Dubois, Biomacromolecules, 2 (2001) 288.

    Article  CAS  Google Scholar 

  20. A. Draye, O. Persenaire, O. Brozek, J. Roda, T. Kosek and Ph. Dubois, Polymer, 42 (2001) 8325.

    Article  CAS  Google Scholar 

  21. Y. Aoyagi, K. Yamashita and Y. Doi, Polym. Degrad. Stab., 76 (2002) 53.

    Article  CAS  Google Scholar 

  22. G. Sivalingam, R. Karthik and G. Madras, J. Anal. Appl. Pyrolysis, 70 (2003) 631.

    Article  CAS  Google Scholar 

  23. R. A. Ruseckaite and A. Jiménez, Polym. Degrad. Stab., 81 (2003) 353.

    Article  CAS  Google Scholar 

  24. A. Fullana, R. Font, J. A. Conesa and P. Blasco, Environ. Sci. Technol., 34 (2000) 2092.

    Article  CAS  Google Scholar 

  25. S. L. Le Van, Thermal Degradation in Concise Encyclopedia of Wood and Wood-Based Materials, 1st Edition, AP. Schniewind Eds, Elmsford, Pergamon Press, New York 1989, pp. 271–273.

    Google Scholar 

  26. A. D. Pouwels, G. B. Eijkel and J. J. Boon, J. Anal. Appl. Pyrolysis, 14 (1989) 237.

    Article  CAS  Google Scholar 

  27. S. C. Moldoveanu, Analytical Pyrolysis of Natural Organic Polymers, Elsevier, Amsterdam 1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roxana A. Ruseckaite.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiménez, A., Ruseckaite, R.A. Binary mixtures based on polycaprolactone and cellulose derivatives. J Therm Anal Calorim 88, 851–856 (2007). https://doi.org/10.1007/s10973-005-7452-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-005-7452-7

Keywords

Navigation