Skip to main content
Log in

XRD, TEM and thermal analysis of Fe doped boehmite nanofibres and nanosheets

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Iron doped boehmite nanofibres with varying iron content have been prepared at low temperatures using a hydrothermal treatment in the presence of poly(ethylene oxide) surfactant. The resultant nanofibres were characterized by X-ray diffraction (XRD), and transmission electron microscopy (TEM). TEM images showed the resulting nanostructures are predominantly nanofibres when Fe doping is no more than 5%; in contrast nanosheets were formed if Fe doping was above 5%. For the 10% Fe doped boehmite, a mixed morphology of nanofibres and nanosheets were obtained. Nanotubes instead of nanofibres were observed in samples with 20% added iron. The Fe doped boehmite and the subsequent nanofibres/nanotubes were analysed by thermogravimetric and differential thermogravimetric methods. Boehmite nanofibres decompose at higher temperatures than non-hydrothermally treated boehmite and nano-sheets decompose at lower temperatures than the nanofibres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. H. Fendler and F. C. Meldrum, Adv. Mater. (Weinheim, Germany), 7 (1995) 607.

    Article  CAS  Google Scholar 

  2. B. B. Lakshmi, C. J. Patrissi and C. R. Martin, Chem. Mater., 9 (1997) 2544.

    Article  CAS  Google Scholar 

  3. Y. Sun and Y. Xia, Nature, 298 (2002) 2176.

    CAS  Google Scholar 

  4. M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith and C. M. Lieber, Nature, 415 (2002) 617.

    Article  CAS  Google Scholar 

  5. J.-L. Le Loarer, H. Nussbaum and D. Bortzmeyer, (Rhodia Chimie, Fr.). Application: WO, 1998, p. 44.

    Google Scholar 

  6. V. S. Burkat, V. S. Dudorova, V. S. Smola and T. S. Chagina, Light Metals (Warrendale, PA, United States), (1985) 1443.

    Google Scholar 

  7. C. Nedez, J.-P. Boitiaux, C. J. Cameron and B. Didillon, Langmuir, 12 (1996) 3927.

    Article  CAS  Google Scholar 

  8. Y. Chen, L. Jin and Y. Xie, J. Sol-Gel Sci. Technol., 13 (1998) 735.

    Article  CAS  Google Scholar 

  9. D. S. Xue, Y. L. Huang, Y. Ma, P. H. Zhou, Z. P. Niu, F. S. Li, R. Job and W. R. Fahrner, J. Mater. Sci. Lett., 22 (2003) 1817.

    Article  CAS  Google Scholar 

  10. A. P. Philipse, A.-M. Nechifor and C. Patmamanoharan, Langmuir, 10 (1994) 4451.

    Article  CAS  Google Scholar 

  11. K. Okada, A. Tanaka, S. Hayashi, K. Daimon and N. Otsuka, J. Mater. Res., 9 (1994) 1709.

    Article  CAS  Google Scholar 

  12. S. Ananthakumar, V. Raja and K. G. K. Warrier, Mater. Lett., 43 (2000) 174.

    Article  CAS  Google Scholar 

  13. C. Kaya, J. Y. He, X. Gu and E. G. Butler, Microporous Mesoporous Mater., 54 (2002) 37.

    Article  CAS  Google Scholar 

  14. J. Bugosh, J. Phys. Chem., 65 (1961) 1789.

    Article  CAS  Google Scholar 

  15. M. P. B. Van Bruggen, Langmuir, 14 (1998) 2245.

    Article  Google Scholar 

  16. D. Kuang, Y. Fang, H. Liu, C. Frommen and D. Fenske, J. Mater. Chem., 13 (2003) 660.

    Article  CAS  Google Scholar 

  17. H. Y. Zhu, D. Y. Song, Y. Q. Bai, S. P. Ringer, Z. Gao, Y. X. Xi, W. Martens, J. D. Riches and R. L. Frost, J. Phys. Chem. B, 108 (2004) 4245.

    Article  CAS  Google Scholar 

  18. H. Y. Zhu, J. D. Riches and J. C. Barry, Chem. Mater., 14 (2002) 2086.

    Article  CAS  Google Scholar 

  19. L. Wood and J. Lindley, (Imperial Chemical Industries Ltd., UK), Application: EP EP, 1980, p. 21.

    Google Scholar 

  20. W. Teunissen, A. A. Bol and J. W. Geus, Catal. Today, 48 (1999) 329.

    Article  CAS  Google Scholar 

  21. J. M. Bouzaid, R. L. Frost, A. W. Musumeci and W. N. Martens, J. Therm. Anal. Cal., 86 (2006) 745.

    Article  CAS  Google Scholar 

  22. R. L. Frost, J. M. Bouzaid, A. W. Musumeci, J. T. Kloprogge and W. N. Martens, J. Therm. Anal. Cal., 86 (2006) 437.

    Article  CAS  Google Scholar 

  23. R. L. Frost, J. Kristof, W. N. Martens, M. L. Weier and E. Horvath, J. Therm. Anal. Cal., 83 (2006) 675.

    Article  CAS  Google Scholar 

  24. R. L. Frost, A. W. Musumeci, J. T. Kloprogge, M. L. Weier, M. O. Adebajo and W. Martens, J. Therm. Anal. Cal., 86 (2006) 205.

    Article  CAS  Google Scholar 

  25. R. L. Frost, R.-A. Wills, J. T. Kloprogge and W. Martens, J. Therm. Anal. Cal., 84 (2006) 489.

    Article  CAS  Google Scholar 

  26. R. L. Frost, R.-A. Wills, J. T. Kloprogge and W. N. Martens, J. Therm. Anal. Cal., 83 (2006) 213.

    Article  CAS  Google Scholar 

  27. R. L. Frost, J. Kristof, M. L. Weier, W. N. Martens and E. Horvath, J. Therm. Anal. Cal., 79 (2005) 721.

    Article  CAS  Google Scholar 

  28. R. L. Frost, M. L. Weier and W. Martens, J. Therm. Anal. Cal., 82 (2005) 115.

    Article  CAS  Google Scholar 

  29. R. L. Frost, M. L. Weier and W. Martens, J. Therm. Anal. Cal., 82 (2005) 373.

    Article  CAS  Google Scholar 

  30. Y.-H. Lin, M. O. Adebajo, R. L. Frost and J. T. Kloprogge, J. Therm. Anal. Cal., 81 (2005) 83.

    Article  CAS  Google Scholar 

  31. H. Y. Zhu, X. P. Gao, D. Y. Song, S. P. Ringer, Y. X. Xi and R. L. Frost, Microporous Mesoporous Mater., 85 (2005) 226.

    Article  CAS  Google Scholar 

  32. H. D. Ruan, R. L. Frost and J. T. Kloprogge, Spectrochim. Acta, Part A, 57A (2001) 2575.

    CAS  Google Scholar 

  33. H. D. Ruan, R. L. Frost, J. T. Kloprogge and L. Duong, Spectrochim. Acta, Part A, 58A (2002) 479.

    CAS  Google Scholar 

  34. H. D. Ruan, R. L. Frost, J. T. Kloprogge and L. Duong, Spectrochim. Acta, Part A, 58A (2002) 479.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. L. Frost.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, Y., Frost, R.L., Martens, W.N. et al. XRD, TEM and thermal analysis of Fe doped boehmite nanofibres and nanosheets. J Therm Anal Calorim 90, 755–760 (2007). https://doi.org/10.1007/s10973-006-8248-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-006-8248-0

Keywords

Navigation