Skip to main content
Log in

The Peltier effect

  • Regular Papers
  • Theory/Instrumentation
  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Thermodynamic consideration of thermoelectricity in metals was applied to the Peltier effect, like it was done recently for the Seebeck effect. The Peltier coefficient was derived from the difference in the total energy of electrons in two metals in contact: Π=ɛ0 Tln(1+TΘV), where ɛ0 is the ‘universal’ sensitivity of thermocouples and ΘV is the characteristic temperature of a particular thermocouple.

The Peltier and Seebeck coefficients derived from the new thermodynamic model were shown not to hold the Thomson relation exactly, but only in the low-temperature limit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. R. Heikes and R. W. Ure, Thermoelectricity: science and engineering. Interscience Publishers, New York-London 1961, p. 576.

    Google Scholar 

  2. A. Amengual, A. Isalgue, F. Marco, H. Tachoire, V. Torra and V. R. Torra, J. Thermal Anal. 38 (1992) 583.

    Article  CAS  Google Scholar 

  3. A. Zogg, F. Stoessel, U. Fischer and K. Hungerbuhler, Thermochim. Acta, 419 (2004) 1.

    Article  CAS  Google Scholar 

  4. A. Velázquez-Campoy, O. López-Mayorga and M. A. Cabrerizo-Vílchez, J. Therm. Anal. Cal., 57 (1999) 343.

    Article  Google Scholar 

  5. I. Wadsö and L. Wadso, Thermochim. Acta, 405 (2003) 15.

    Article  CAS  Google Scholar 

  6. S. Yamaguchi, T. Yamaguchi, K. Nakamura, Y. Hasegawa, H. Okumura and K. Sato, Rev. Sci. Instrum., 75 (2004) 207.

    Article  CAS  Google Scholar 

  7. E. Rudometov and V. Rudometov, PC: Overclocking, Optimization, & Tuning. ’Bhv Publishing House’, 2001, p. 410.

  8. Y. Kraftmakher, Eur. J. Phys., 26 (2005) 959.

    Article  CAS  Google Scholar 

  9. A. Sommerfeld and N. H. Frank, Rev. Mod. Phys., 3 (1931) 1.

    Article  Google Scholar 

  10. H. B. Callen, Phys. Rev., 73 (1948) 1349.

    Article  CAS  Google Scholar 

  11. C. A. Dominicali, Rev. Mod. Phys., 26 (1954) 237.

    Article  Google Scholar 

  12. S. R. de Groot and P. Mazur, Non-Equilibrium Thermodynamics, North-Holland 1969.

  13. G. Magnus, Pogg. Ann., 83 (1851) 469.

    Article  Google Scholar 

  14. V. A. Drebushchak, J. Therm. Anal. Cal., 90 (2007) 289.

    Article  CAS  Google Scholar 

  15. A. K. Galwey, J. Therm. Anal. Cal., 79 (2005) 219.

    Article  CAS  Google Scholar 

  16. A. K. Galwey, J. Therm. Anal. Cal., 82 (2005) 23.

    Article  CAS  Google Scholar 

  17. Yu. A. Skripnik and I. A. Khimicheva, Meas. Tech., 40 (1997) 673.

    Article  Google Scholar 

  18. A. E. Caswell, Phys. Rev., 33 (1911) 379.

    Google Scholar 

  19. W. P. White, Phys. Rev., 31 (1910) 135.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Drebushchak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drebushchak, V.A. The Peltier effect. J Therm Anal Calorim 91, 311–315 (2008). https://doi.org/10.1007/s10973-007-8336-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-007-8336-9

Keywords

Navigation