Skip to main content
Log in

Effect of citrate to nitrate ratio on the decomposition characteristics and phase formation of alumina

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This paper reports the effect of the variation of citrate to nitrate ratio on the thermal decomposition characteristics of alumina precursor and the properties of nanocrystalline alumina synthesized using this auto-ignition process. The technique involves the auto-ignition of a citrate-nitrate gel occurring between Al(NO3)3 and citric acid to yield an ash powder that upon calcination at 1373 K produced α-alumina. The auto-ignition was restricted to a particular range of citrate to nitrate ratio in the gel. The resulting powder exhibited large surface area (40–50 m2 gm−1) and fine crystallite size. It was established from various characterization techniques that the alumina powder prepared with a C/N ratio of 0.3 has got the optimum powder characteristics compared to the rest of the batches, thus establishing the importance of maintaining a stoichiometric or near stoichiometric C/N ratio. The process has a higher degree of reproducibility and a good potential for large-scale production of alumina.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. E. Yoldas, J. Mater. Sci., 11 (1976) 465.

    Article  CAS  Google Scholar 

  2. J. G. Li and X. Sun, Acta Mater., 48 (2000) 3103.

    Article  CAS  Google Scholar 

  3. P. K. Sharma, V. V. Varadan and V. K. Varadan, J. Eur. Ceram. Soc., 23 (2003) 659.

    Article  CAS  Google Scholar 

  4. C. S. Nordahl and G. L. Messing, J. Eur. Ceram. Soc., 22 (2002) 415.

    Article  CAS  Google Scholar 

  5. L. Fu, D. L. Johnson, J. G. Zheng and V. P. Dravid, J. Am. Ceram. Soc., 86 (2003) 1635.

    Article  CAS  Google Scholar 

  6. C. P. Lin, S. B. Wen and T. T. Lee, J. Am. Ceram. Soc., 85 (2002) 129.

    CAS  Google Scholar 

  7. R. H. G. A. Kiminami, M. R. Morelli, D. C. Folz and D. E. Clark, Am. Ceram. Soc. Bull., (2000) 63.

  8. A. H. Carim, G. S. Rohrer, N. R. Dando, S. Y. Tzeng, C. L. Rohrer and A. J. Perrotta, J. Am. Ceram. Soc., 80 (1997) 2677.

    Article  CAS  Google Scholar 

  9. A. Krell and H. Ma, Nanostruct. Mater., 11 (1999) 1141.

    Article  CAS  Google Scholar 

  10. H. C. Park, Y. J. Park and R. Stevens, Mater. Sci. Eng. A., 367 (2004) 166.

    Article  CAS  Google Scholar 

  11. X. Wang and G. Lu, Mater. Chem. Phys., 90 (2005) 225.

    Article  CAS  Google Scholar 

  12. W. Kucza, J. Oblakowski, R. Gajerski, S. Labus, M. Danielewski, A. Malecki, J. Morgiel and A. Michalski, J. Therm. Anal. Cal., 88 (2007) 65.

    Article  CAS  Google Scholar 

  13. B. S. Maruthiprasad, M. N. Sastri, S. Rajagopal, K. Seshan, K. R. Krishnamurthy and T. S. R. Prasada Rao, J. Therm. Anal. Cal., 34 (1988) 1023.

    Article  CAS  Google Scholar 

  14. O. Mekasuwandumrong, V. Pavarajarn, M. Inoue and P. Praserthdam, Mater. Chem. Phys., 100 (2006) 445.

    Article  CAS  Google Scholar 

  15. D. M. Ibrahim, T. Khalil and A. A. Mostafa, Ceram. Int., 25 (1999) 273.

    Article  CAS  Google Scholar 

  16. V. Siva Kumar, G. Kelekanjeri, W. B. Carter and J. M. Hampikian, Thin Solid Films., 515 (2006) 1905.

    Article  CAS  Google Scholar 

  17. S. Bhaduri, E. Zhou and S. B. Bhaduri, Nanostruct. Mater., 7 (1996) 487.

    Article  CAS  Google Scholar 

  18. J. J. Kingsley and K. C. Patil, Mater. Lett., 6 (1988) 427.

    Article  CAS  Google Scholar 

  19. R. N. Das, A. Bandopadhyay and S. Bose, J. Am. Ceram. Soc., 84 (2001) 2421.

    Article  CAS  Google Scholar 

  20. R. L. Smith and S. V. Yanina, J. Am. Ceram. Soc., 85 (2002) 2325.

    Article  CAS  Google Scholar 

  21. F. S. Shiau and T. T. Fang, Mater. Chem. Phys., 60 (1999) 91.

    Article  CAS  Google Scholar 

  22. L. C. Pathak, T. B. Singh, S. Das, A. K. Verma and P. Ramachandrarao, Mater. Lett., 57 (2002) 380.

    Article  CAS  Google Scholar 

  23. C. C. Chen and K. T. Huang, J. Mater. Res., 20 (2005) 424.

    Article  CAS  Google Scholar 

  24. M. T. Hernandez and M. Gonzalez, J. Eur. Ceram. Soc., 22 (2002) 2861.

    Article  CAS  Google Scholar 

  25. J. C. Toniolo, M. D. Lima, A. S. Takimi and C. P. Bergmann, Mater. Res. Bull., 40 (2005) 561.

    Article  CAS  Google Scholar 

  26. J. Li, Y. Pan, C. Xiang, Q. Ge and J. Guo, Ceram. Inter., 32 (2006) 587.

    Article  CAS  Google Scholar 

  27. J. Li, Y. Wu, Y. Pan and J. Guo, Ceram. Int., 33 (2007) 361.

    Article  CAS  Google Scholar 

  28. L. Baca, J. Plewa, L. Pach and J. Opfermann, J. Therm. Anal. Cal., 66 (2001) 803.

    Article  CAS  Google Scholar 

  29. M. Planda and P. Staszczuk, J. Therm. Anal. Cal., 62 (2000) 561.

    Article  CAS  Google Scholar 

  30. M. Pyzalski and M. Wojcik, J. Thermal Anal., 36 (1990) 2147.

    Article  CAS  Google Scholar 

  31. C. Navok, G. Pokol, V. Izvekov and T. Gal, J. Thermal Anal., 36 (1990) 1895.

    Article  Google Scholar 

  32. P. S. Devi and M. S. Rao, Thermochim. Acta, 153 (1989) 181.

    Article  CAS  Google Scholar 

  33. P. S. Devi and M. S. Rao, J. Thermal Anal., 48 (1997) 909.

    Article  CAS  Google Scholar 

  34. L. W. Tai and P. A. Lessing, J. Mater. Res., 7 (1992) 502.

    Article  CAS  Google Scholar 

  35. A. Chakraborty, P. S. Devi, S. Roy and H. S. Maiti, J. Mater. Res., 9 (1994) 986.

    Article  CAS  Google Scholar 

  36. A. Chakraborty, P. S. Devi and H. S. Maiti, Mater. Lett., 20 (1994) 63.

    Article  CAS  Google Scholar 

  37. A. Chakraborty, P. S. Devi and H. S. Maiti, J. Mater. Res., 10 (1995) 918.

    Article  CAS  Google Scholar 

  38. S. Basu, P. S. Devi and H. S. Maiti, J. Mater. Res., 19 (2004) 3162.

    Article  CAS  Google Scholar 

  39. S. Banerjee and P. S. Devi, J. Nanoparticle Res., DOI: 10.1007/s11051-006-9204-4.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Sujatha Devi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Banerjee, S., Sujatha Devi, P. Effect of citrate to nitrate ratio on the decomposition characteristics and phase formation of alumina. J Therm Anal Calorim 90, 699–706 (2007). https://doi.org/10.1007/s10973-007-8525-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-007-8525-6

Keywords

Navigation