Skip to main content
Log in

Some thermodynamic functions and kinetics of thermal decomposition of NH4MnPO4 · H2O in nitrogen atmosphere

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The ammonium manganese phosphate monohydrate (NH4MnPO4 · H2O) was found to decompose in three steps in the sequence of: deammination, dehydration and polycondensation. At the end of each step, the consecutive one started before the previous step was finished. The thermal final product was found to be Mn2P2O7 according to the characterization by X-ray powder diffraction (XRD) and Fourier transform infrared spectroscopy. Vibrational frequencies of breaking bonds in three stages were estimated from the isokinetic parameters and found to agree with the observed FTIR spectra. The kinetics of thermal decomposition of this compound under non-isothermal conditions was studied by Kissinger method. The calculated activation energies Ea are 110.77, 180.77 and 201.95 kJ mol−1 for the deammination, dehydration and polycondensation steps, respectively. Thermodynamic parameters for this compound were calculated through the kinetic parameters for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Carling SG, Day P, Visser D. Crytal and magnetic structures of layer transition metal phosphate hydrates. Inorg Chem. 1995;34:3917–27.

    Article  CAS  Google Scholar 

  2. Šoptrajanov B, Stefov V, Kuzmanovski I, Jovanovski G, Lutz HD, Engelen B. Very low H–O–H bending frequencies. IV. Fourier transform infrared spectra of synthetic dittmarite. J Mol Struct. 2002;613:7–14.

    Article  Google Scholar 

  3. Frost RL, Weier ML, Erickson KL. Thermal decomposition of struvite. J Therm Anal Calorim. 2004;76:1025–33.

    Article  CAS  Google Scholar 

  4. Lapina LM. Metal ammonium phosphates and their new applications. Russ Chem Rev. 1968;37:693–701.

    Article  Google Scholar 

  5. Barros N, Airoldi C, Simoni JA, Ramajo B, Espina A, Garcia JR. Calorimetric determination of the effect of ammonium-iron (II) phosphate monohydrate on Rhodic Eutrudox Brazilian. Spectrochim Acta. 2006;441:89–95.

    CAS  Google Scholar 

  6. Erskine AM, Grim G, Horning SC. Ammonium ferrous phosphate: a pigment for metal protective paint finishes. Ind Eng Chem. 1944;36:456–60.

    Article  CAS  Google Scholar 

  7. Vol’fkovich SI, Remen RE. Ammonium phosphates of magnesium, zinc and iron. Chem Abstr. 1956;50:6243.

    Google Scholar 

  8. Yuan A, Wu J, Bai L, Ma S, Huang Z, Tong Z. Standard molar enthalpies of formation for ammonium/3d-transition metal phosphates NH4MPO4 · H2O (M = Mn2+, Co2+, Ni2+, Cu2+). J Chem Eng Data. 2008;53:1066–70.

    Article  CAS  Google Scholar 

  9. Onoda H, Nariai H, Moriwaki A, Maki H, Motooka I. Formation and catalytic characterization of various rare earth phosphates. J Mater Chem. 2002;12:1754–60.

    Article  CAS  Google Scholar 

  10. Onoda H, Kojima K, Nariai H. Additional effects of rare earth elements on formation and properties of some transition metal pyrophosphates. J Alloys Compd. 2006;408:568–72.

    Article  Google Scholar 

  11. Bian JJ, Kim DW, Hong KS. Microwave dielectric properties of Ca2P2O7. J Eur Ceram Soc. 2003;23:2589–92.

    Article  CAS  Google Scholar 

  12. van Smaalen S, Dinnebier RE, Hanson J, Gollwitzer J, Büllesfeld F, Prokofiev A, et al. High temperature behavior of vanadyl pyrophosphate (VO)2P2O7. J Solid State Chem. 2005;178:2225–30.

    Article  Google Scholar 

  13. Takita Y, Sano KI, Kurosaki K, Kawata N, Nishiguchi H, Ito M, et al. Oxidative dehydrogenation of iso-butane to iso-butene I. Metal phosphate catalysts. Appl Catal. 1998;A167:49–56.

    Google Scholar 

  14. Chung UC, Mesa JL, Pizarro JL, Jubera V, Lezama L, Arriortua MI, et al. Mn(HPO3): a new manganese (II) phosphite with a condensed structure. J Solid State Chem. 2005;178:2913–21.

    Article  CAS  Google Scholar 

  15. Boonchom B, Youngme S, Maensiri S, Danvirutai C. Nanocrystalline serrabrancaite (MnPO4 · H2O) prepared by a simple precipitation route at low temperature. J Alloys Compd. 2008;454:78–82.

    Article  CAS  Google Scholar 

  16. Noisong P, Danvirutai C, Srithanratana T, Boonchom B. Synthesis, characterization and non-isothermal decomposition kinetics of manganese hypophosphite monohydrate. Solid State Sci. 2008;10:1598–1604.

    Article  CAS  Google Scholar 

  17. Fowlis DC, Stager CV. Antiferromagnetic resonance in Mn2P2O7. Can J Phys. 1972;50:2681–7.

    CAS  Google Scholar 

  18. Takita Y, Sano KI, Muraya T, Nishiguchi H, Kawata N, Ito M, et al. Oxidative dehydrogenation of iso-butane to iso-butene II. Rare earth phosphate catalysts. Appl Catal. 1998;170A:23–31.

    Google Scholar 

  19. Koleva VG. Metal–water interactions and hydrogen bonding in dittmarite-type compounds MIMIIPO4 · H2O (MI = K+, NH4 +; MII = Mn2+, Co2+, Ni2+): correlations of IR spectroscopic and structural data. Spectrochim Acta. 2005;62:1196–1202.

    CAS  Google Scholar 

  20. Boonchom B, Youngme S, Srithanratana T, Danvirutai C. Synthesis of AlPO4 and kinetics of thermal decomposition of AlPO4 · H2O–H4 precursor. J Therm Anal Calorim. 2008;19:511–6.

    Article  Google Scholar 

  21. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

  22. Basset H, Bedwell WL. Studies of phosphates. Part I. Ammonium magnesium phosphate and related compounds. J Chem Soc. 1993:854–71.

  23. Cullity BD. Elements of X-ray diffraction. 2nd ed. Menlo Park: Addison-Wesley Publishing; 1978. p. 120.

    Google Scholar 

  24. Vlaev LT, Nikolova MM, Gospodinov GG. Non-isothermal kinetics of dehydration of some selenite hexahydrates. J Solid State Chem. 2004;177:2663–9.

    Article  CAS  Google Scholar 

  25. Vyazovkin S. Computational aspects of kinetic analysis. Part C. The ICTAC kinetics project—the light at the end of the tunnel? Thermochim Acta. 2000;355:155–63.

    Article  CAS  Google Scholar 

  26. Zhang KL, Hong JH, Cao GH, Zhan D, Tao YT, Cong CJ. The kinetics of thermal dehydration of copper(II) acetate monohydrate in air. Thermochim Acta. 2005;437:145–9.

    Article  CAS  Google Scholar 

  27. Flynn JH, Wall LA. A quick direct method for the determination of activation energy from thermogravimetric data. Polym Lett. 1966;4:323–8.

    Article  CAS  Google Scholar 

  28. Ozawa TA. New method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.

    Article  CAS  Google Scholar 

  29. Coats AW, Redfern JP. Kinetic parameters from thermogravimetric data. Nature. 1964;20:68–70.

    Article  Google Scholar 

  30. Van Krevelens DW, Hoftijzer PJ. Kinetics of gas−liquid reaction-general theory. Trans I Chem E. 1954;32:5360–83.

    Google Scholar 

  31. Iqbal M, Bhuiyan H, Mavinic DS, Koch FA. Thermal decomposition of struvite and its phase transition. Chemosphere. 2008;70:1347–56.

    Article  Google Scholar 

  32. Chapman AC, Thirlwell LE. Spectra of phosphorus compounds—I the infrared spectra of orthophosphates. Spectrochim Acta. 1964;20:937–47.

    Article  CAS  Google Scholar 

  33. Steger E, Käßner B. Die infrarotspektren von wasserfreien schwermetall-diphosphaten. Spectrochim Acta. 1968; 24A:447–56.

    Google Scholar 

  34. Harcharras M, Ennaciri A, Rulmont A, Gilbert B. Vibrational spectra and structures of double diphosphates M2CdP2O7 (M = Li, Na, K, Rb, Cs). Spectrochim Acta. 1997;A53:345–52.

    Google Scholar 

  35. Assaaoudi H, Butler IS, Kozinski J, Gariépy FB. Crystal structure, vibrational spectra and thermal decomposition of a new tetrazinc(II) dipyrophosphate decahydrate, Zn4(P2O7). J Chem Crystallogr. 2005;35:49–59.

    Article  CAS  Google Scholar 

  36. Baril M, Assaaoudi H, Butler IS. Pressure-tuning Raman microspectroscopic study of cobalt(II), manganese(II), zinc(II) and magnesium(II) pyrophosphate dehydrates. J Mol Struct. 2005;751:168–71.

    Article  CAS  Google Scholar 

  37. Boonchom B, Danvirutai D. Thermal decomposition kinetics of FePO4 · 3H2O precursor to synthetize spherical nanoparticles FePO4. Ind Eng Chem Res. 2007;46:9071–6.

    Article  CAS  Google Scholar 

  38. Vlase T, Vlase G, Doca M, Doca N. Specificity of decomposition of solids in non-isothermal conditions. J Therm Anal Calorim. 2003;72:597–604.

    Article  CAS  Google Scholar 

  39. Pop N, Vlase G, Vlase T, Doca N, Mogos A, Ioitescu A. Compensation effect as a consequence of vibrational energy transfer in homogeneous and isotropic heat field. J Therm Anal Cal. 2008;92:313–7.

    Article  CAS  Google Scholar 

  40. Mianowski A, Marecka A. The isokinetic effect as related to the activation energy for the gases diffusion in coal at ambient temperatures Part I. Fick’s diffusion parameter estimated from kinetic curves. J Therm Anal Calorim. 2009;95:285–92.

    Article  CAS  Google Scholar 

  41. Ioitescu A, Vlase G, Vlase T, Doca N. Kinetics of decomposition of different acid calcium phosphates. J Therm Anal Calorim. 2007;88:121–5.

    Article  CAS  Google Scholar 

  42. Rooney JJ. Ering transition-state theory and kinetics in catalysis. J Mol Catal A. 1995;96:L1.

    Article  CAS  Google Scholar 

  43. Boonchom B. Kinetics and thermodynamic properties of the thermal decomposition of manganese dihydrogenphosphate dihydrate. J Chem Eng Data. 2008;53:1533–8.

    Article  CAS  Google Scholar 

  44. Vlaev L, Nedelchev N, Gyurova K, Zagorcheva M. A comparative study of non-isothermal kinetics of decomposition of calcium oxalate monohydrate. J Anal Appl Pyrol. 2008;81:253–62.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Department of Chemistry, Faculty of Science and Department of Environmental Engineering (For XRD), Faculty of Engineering of Khon Kaen University for providing research facilities. The financial support from the Development and Promotion in Science and Technology Talents Project (DPST) and the Center of Excellence for Innovation in Chemistry (PERCH-CIC), Commission on Higher Education, Ministry of Education is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chanaiporn Danvirutai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Danvirutai, C., Noisong, P. & Youngme, S. Some thermodynamic functions and kinetics of thermal decomposition of NH4MnPO4 · H2O in nitrogen atmosphere. J Therm Anal Calorim 100, 117–124 (2010). https://doi.org/10.1007/s10973-009-0017-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-009-0017-4

Keywords

Navigation