Skip to main content
Log in

Thermal investigation of oil and biodiesel from Jatropha curcas L.

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Biodiesel is susceptible to autoxidation if exposed to air, light and temperature, during its storage. Physic nut (Jatropha curcas L.) seeds show potential application for biodiesel production since its oil yields high quality biodiesel. This work aims to evaluate the thermal behavior of the physic nut oil and biodiesel, from several Brazilian crops, by means of thermoanalytical techniques. Thermogravimetry (TG) and pressurized-differential scanning calorimetry (PDSC) were used in order to determine the applicability of physic nut biodiesel as fuel. Results suggest that physic nut biodiesel is a practical alternative as renewable and biodegradable fuel able to be used in diesel motors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Moser BR, Sharma BK, Doll KM, Erhan SZ. Diesters from oleic acid: synthesis, low temperature properties, and oxidation stability. J Am Oil Chem Soc. 2007;84:675–80.

    Article  CAS  Google Scholar 

  2. Knothe G. Some aspects of biodiesel oxidative stability. Fuel Process Technol. 2007;88:669–77.

    Article  CAS  Google Scholar 

  3. Dunn RO. Oxidative stability of biodiesel by dynamic mode pressurized-differential scanning calorimetry (P-DSC). Am Soc Agric Biol Eng. 2006;49(5):1633–41.

    CAS  Google Scholar 

  4. Pinto AC, Guarieiro LLN, Rezende MJC, Ribeiro NM, Torres EA, Lopes WA, et al. Biodiesel: an overview. J Braz Chem Soc. 2005;16:1313–30.

    CAS  Google Scholar 

  5. Acten WMJ, Verchot L, Franken YJ, Mathijs E, Singh VP, Aerts R, et al. Jatropha bio-diesel production and use. Biomass an bioenergy. Biomass Bioenergy. 2008;32:1063–84.

    Google Scholar 

  6. Berchmans HJ, Hirata S. Biodiesel production from crude Jatropha curcas L. seed oil with a high content of free fatty acids. Bioresour Technol. 2008;99:1716–21.

    Google Scholar 

  7. Foidl N, Foidl G, Sanchez M, Mittelbach M, Hackel S. Jatropha curcas L. as a source of production of biofuel in Nicaragua. Bioresour Technol. 1996;58(1):77–82.

    Article  CAS  Google Scholar 

  8. Zhou H, Lu H, Liang B. Solubility of multicomponent systems in the biodiesel production by transesterification of Jatropha curcas L. oil with methanol. J Chem Eng Data. 2006;51:1130–5.

    Article  CAS  Google Scholar 

  9. Conceição MM, Candeia RA, Silva FC, Bezerra AF, Fernandes VJ Jr, Souza AG. Thermoanalytical characterization of castor oil biodiesel. Renew Sustain Energy Rev. 2007;11:964–75.

    Article  Google Scholar 

  10. Wan Nik WB, Ani FN, Masjuki HH. Thermal stability evaluation of palm oil as energy transport media. Energy Convers Manag. 2005;46:2198–215.

    Article  CAS  Google Scholar 

  11. Dunn RO. Effect of antioxidants on the oxidative stability of methyl soyate (biodiesel). Fuel Process Technol. 2005;86:1071–85.

    Article  CAS  Google Scholar 

  12. Goodrum JW. Rapid measurements of boiling point and vapor pressure of short-chain triglycerides by thermogravimetric analysis. J Am Oil Chem Soc. 1997;74(8):947–50.

    Article  CAS  Google Scholar 

  13. Mothé CG, Azevedo AD. Análise Térmica de Materiais. São Paulo, 2002;ch.3:32.

  14. Kök MV, Acar C. Kinetics of crude oil combustion. J Therm Anal Calorim. 2006;83(2):445–9.

    Article  Google Scholar 

  15. Kök MV, Pokol G, Keskin C, Madarász J, Bagci S. Light crude oil combustion in the presence of limestone matrix. J Therm Anal Calorim. 2004;75:781–6.

    Article  Google Scholar 

  16. Moura KRM, Silva FC, Brandão KSR, Souza AG, Conceição MM. Estabilidade Térmica do Sebo Bovino e do Biodiesel Metílico e Caracterização Físico-química. In: I Congresso da Rede Brasileira de Tecnologia de Biodiesel, Brasília; 2006;1:207–12.

  17. Dantas MB, Conceição MM, Fernandes VJ Jr, Santos NA, Rosenhaim R, Marques ALB, et al. Rosenhaim thermal and kinetic study of corn biodiesel and obtained by the methanol and ethanol. J Therm Anal Calorim. 2007;87(3):835–9.

    Article  CAS  Google Scholar 

  18. Garcia-Mesa JA, Luque de Castro MD, Valcarcel M. Factors affecting the gravimetric determination of the oxidative stability of oils. J Am Oil Chem Soc. 1993;70(3):245–7.

    Article  CAS  Google Scholar 

  19. Gutiérrez F. Determination of the oxidative stability of virgin olive oils: comparison of the active oxygen and the Rancimat methods. Grasas Aceites. 1989;40(1):1–5.

    Google Scholar 

  20. Hill SE, Perkins EG. Determination of oxidation stability of soybean oil with the oxidative stability instrument: operation parameter effects. J Am Oil Chem Soc. 1995;72(6):741–3.

    Google Scholar 

  21. Smouse TH. In: Warner K, Eskin NAM, editors. Methods to assess quality and stability of oils and fat-containing foods. Champaign, IL: AOCS; 1995. p. 17–8.

  22. Frankel EN, Huang SW. Improving the oxidative stability of polyunsaturated vegetable oils by blending with high-oleic sunflower oil. J Am Oil Chem Soc. 1994;71(3):255–9.

    Article  CAS  Google Scholar 

  23. Jung MY, Yoon SH, Min DB. Effects of processing stepson the contents of minor compounds and oxidation of soybean oil. J Am Oil Chem Soc. 1989;66(1):118–20.

    Article  Google Scholar 

  24. Gordon MH, Rahman IA. Effect of processing on the composition and oxidative stability of coconut oil. J Am Oil Chem Soc. 1991;68(8):574–6.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge CNPq, CAPES and FINEP for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Souza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freire, L.M.S., Bicudo, T.C., Rosenhaim, R. et al. Thermal investigation of oil and biodiesel from Jatropha curcas L.. J Therm Anal Calorim 96, 1029–1033 (2009). https://doi.org/10.1007/s10973-009-0055-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-009-0055-y

Keywords

Navigation