Skip to main content
Log in

Thermal analysis of a white calcium bentonite

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A white calcium bentonite (CaB) taken from Çamlıdere (Ankara, Turkey) region was heated at various temperatures between 100 and 1100 °C for 2 h. The mineralogy of the CaB was determined as calcium smectite (CaS), metahalloysite (MH), opal-A (OA), opal-CT (OCT), quartz (Q), feldspar (F), and calcite (C) using the X-ray diffraction patterns of the natural CaB and its heated samples. Besides the XRD patterns, the thermogravimetry, differential thermal analysis, and low-temperature nitrogen adsorption (N2-AD) data show that the CaS lose adsorbed and hydration water up to 300 °C, dehydroxylation takes place between 300 and 750 °C, and then the 2:1 layer structure completely collapses above 900 °C. The activation energies for the dehydration and dehydroxylation were calculated as 7636 and 48838 J mol−1, respectively, from the TG data using Coats and Redfern method. The specific surface area (S) and specific micro–mesopore volume (V) obtained from N2-AD data were 44 m2 g−1 and 0.100 cm3 g−1 for the natural CaB. S and V reach their maxima of 105 m2 g−1 and 0.155 cm3 g−1, respectively, at 300 °C, remain approximately constant as the temperature increases up to 700 °C and then decrease almost in parallel with each other, reaching their minima at 900 °C. This indicates that the S and V values increase gradually during dehydration and dehydroxylation of the CaS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Grim RE, Güven N. Bentonites, geology, mineralogy, properties and uses, development in sedimentology, vol. 24. New York: Elsevier; 1978.

    Google Scholar 

  2. Souza CEC, Nascimento RSV. Adsorption behavior of cationic polymers on bentonite. J Therm Anal Calorim. 2008;94:579–83.

    Article  CAS  Google Scholar 

  3. Varma RS. Clay and clay-supported reagents in organic synthesis. Tetrahedron. 2002;58:1235–55.

    Article  CAS  Google Scholar 

  4. Noyan H, Önal M, Sarıkaya Y. The effect of sulphuric acid activation on the crystallinity, surface area, porosity, surface acidity, and bleaching power of a bentonite. Food Chem. 2007;105:156–63.

    Article  CAS  Google Scholar 

  5. Leite IF, Soares APS, Carvalho LH, Raposo CMO, Malta OML, Silva SML. Characterization of pristine and purified organobentonites. J Therm Anal Calorim. 2009. doi: 10.1007/s10973-009-0265-3.

  6. Murray HH. Traditional and new applications for kaolin, smectite, and palygorskite; a general overview. Appl Clay Sci. 2000;17:207–21.

    Article  CAS  Google Scholar 

  7. Grim RE. Clay mineralogy. 2nd ed. New York: McGraw-Hill; 1968.

    Google Scholar 

  8. Moore DM, Reynolds RC Jr. X-ray diffraction and the identification and analysis of clay minerals. Oxford: Oxford University Press; 1997.

    Google Scholar 

  9. Bergaya F, Theng BKG, Lagaly G. Handbook of clay science. Amsterdam: Elsevier; 2006.

    Google Scholar 

  10. Önal M, Sarıkaya Y. Preparation and characterization of acid-activated bentonite powders. Powder Technol. 2007;172:14–8.

    Article  Google Scholar 

  11. Gregg SJ, Sing KSW. Adsorption, surface area and porosity. 2nd ed. London: Academic Press; 1982.

    Google Scholar 

  12. Lu GQ, Zhao XS. Nanoporous materials science and engineering. Series on Chemical Engineering, vol. 4. London: Imperial College Press; 2004.

  13. Rouquerol F, Rouquerol J, Sing K. Adsorption by powder and porous solids. London: Academic Press; 1999.

    Google Scholar 

  14. Önal M, Sarıkaya Y. Thermal behavior of a bentonite. J Therm Anal Calorim. 2007;90:167–72.

    Article  Google Scholar 

  15. Komadel P. Chemically modified smectites. Clay Miner. 2003;38:127–38.

    Article  CAS  Google Scholar 

  16. Wang MC, Benway JM, Arayssi AM. The effect of heating on engineering properties of clays. In: Hoodinott KB, Lamb RO, Lutenegger AJ, editors. Physicochemical aspects of soil and related materials. Philadelphia: ASTM STP 1095; 1990. p. 1139–58.

  17. Abu-Zreig MM, Al-Akhras NM, Attom MF. Influence of heat treatment on the behavior of clay soils. Appl Clay Sci. 2001;20:129–35.

    Article  CAS  Google Scholar 

  18. Noyan H, Önal M, Sarıkaya Y. A model developed for acid dissolution thermodynamics of a Turkish bentonite. J Therm Anal Calorim. 2008;94:591–6.

    Article  CAS  Google Scholar 

  19. Tan Ö, Yılmaz L, Zaimoğlu S. Variation of some engineering properties of clays with heat treatment. Mater Lett. 2004;58:1176–9.

    Article  CAS  Google Scholar 

  20. Bradley WF, Grim RE. High temperature thermal effects of clay and related materials. Am Miner. 1951;36:182–201.

    CAS  Google Scholar 

  21. Brindley GW. Thermal reactions of clay and clay minerals. Ceramica. 1978;24:217–24.

    CAS  Google Scholar 

  22. Mozas T, Bruque S, Rodriquez A. Effect of thermal treatment on lanthanide montmorillonites: dehydration. Clay Miner. 1980;15:421–8.

    Article  CAS  Google Scholar 

  23. Reicle WT. Catalytic reactions by thermally activated, synthetic, anionic clay minerals. J Catal. 1985;94:547–57.

    Article  Google Scholar 

  24. Ceylan H, Yıldız A, Sarıkaya Y. Investigation of adsorption fatty acids on two different clays using IR, DTA and TGA techniques. Turk J Chem. 1993;17:267–72.

    CAS  Google Scholar 

  25. Joshi RC, Achari G, Horfield D, Nagaraj TS. Effect of heat treatment on strength of clays. J Geotech Eng-ASCE. 1994;120:1080–8.

    Article  Google Scholar 

  26. Chorom M, Rengasamy P. Effect of heating on swelling and dispersion of different cationic forms of a smectite. Clays Clay Miner. 1996;44:783–90.

    Article  CAS  Google Scholar 

  27. Sarıkaya Y, Önal M, Baran B, Alemdaroğlu T. The effect of thermal treatment on some of the physicochemical properties of a bentonite. Clays Clay Miner. 2000;48:557–62.

    Article  Google Scholar 

  28. Neaman A, Pelletier M, Villiéras F. The effect of exchanged cation, compression, heating and hydration on textural properties of bulk bentonite and its corresponding purified montmorillonite. Appl Clay Sci. 2003;22:153–68.

    Article  CAS  Google Scholar 

  29. Önal M. Swelling and cation exchange capacity relationship for the samples obtained from a bentonite by acid activations and heat treatments. Appl Clay Sci. 2007;37:74–80.

    Article  Google Scholar 

  30. Noyan H, Önal M, Sarıkaya Y. The effect of heating on the surface area, porosity and surface acidity of bentonite. Clays Clay Miner. 2006;54:375–81.

    Article  CAS  Google Scholar 

  31. Sarıkaya Y, Aybar S. The adsorption of NH3, N2O and CO2 gases on the 5A molecular sieve. Commun Fac Sci Univ Ankara. 1978;B24:33–9.

    Google Scholar 

  32. Sing K. The use of nitrogen adsorption for characterization of porous materials. Colloid Surf A. 2001;187–188:3–9.

    Article  Google Scholar 

  33. Drees LR, Wilding LP, Smeck NE, Senkayi AL. Silica in soils: quartz and disordered silica polymorphs. In: Dizon JB, Weed SB, editors. Minerals in soil environment. Madison: Soil Science Society of America Inc; 1995. p. 914–47.

    Google Scholar 

  34. Elzea JM, Odom JE, Miles WJ. Distinguishing well ordered opal-CT and opal-C from high temperature cristobalite by X-ray diffraction. Anal Chim Acta. 1994;286:107–16.

    Article  CAS  Google Scholar 

  35. Kahraman S, Önal M, Sarıkaya Y, Bozdoğan İ. Characterization of silica polymorphs in kaolins by X-ray diffraction before and after phosphoric acid digestion and thermal treatment. Anal Chim Acta. 2005;552:201–6.

    Article  CAS  Google Scholar 

  36. Önal M, Kahraman S, Sarıkaya Y. Differentiation of α-cristobalite from opals in bentonites from Turkey. Appl Clay Sci. 2007;35:25–30.

    Article  Google Scholar 

  37. Önal M, Sarıkaya Y. The effect of heat treatment on the paracrystallinity of an opal-CT found in a bentonite. J Non-Cryst Solids. 2007;533:4195–8.

    Article  Google Scholar 

  38. Bayram H, Önal M, Üstünışık G, Sarıkaya Y. Some thermal characteristic of a mineral mixture of palygorskite, metahalloysite, magnesite and dolomite. J Therm Anal Calorim. 2007;89:169–74.

    Article  CAS  Google Scholar 

  39. Balek V, Málek Z, Yariv S, Matuschek G. Characterization of montmorillonite saturated with various cations. J Therm Anal Calorim. 1999;56:67–76.

    Article  CAS  Google Scholar 

  40. Kök MV, Smykatz-Kloss W. Thermal characterization of dolomites. J Therm Anal Calorim. 2001;64:1271–5.

    Article  Google Scholar 

  41. Frost RL, Ding Z, Ruan HD. Thermal analysis of goethite. J Therm Anal Calorim. 2003;71:783–97.

    Article  CAS  Google Scholar 

  42. Frost RL, Weier ML, Glissold ME, Williams PA, Kloprogge JT. Thermal decomposition of the natural hydrotalcites, carrboydite and hydrobonessite. Thermochim Acta. 2003;407:1–9.

    Article  CAS  Google Scholar 

  43. Yariv S. The role of charcoal on DTA curves of organo-clay complexes: an overview. Appl Clay Sci. 2004;24:225–36.

    Article  CAS  Google Scholar 

  44. Yariv S, Lepides I. The use of thermo-XRD-analysis in the study of organo-smectite complexes. J Therm Anal Calorim. 2005;80:11–26.

    Article  CAS  Google Scholar 

  45. Xi Y, Martens W, He H, Frost RL. Thermogravimetric analysis of organoclays intercalated with the surfactant octadocyltrimethylammonium bromide. J Therm Anal Calorim. 2005;81:91–7.

    Article  CAS  Google Scholar 

  46. Yener N, Önal M, Üstünışık G, Sarıkaya Y. Thermal behavior of a mineral mixture of sepiolite and dolomite. J Therm Anal Calorim. 2007;88:813–7.

    Article  CAS  Google Scholar 

  47. Malek Z, Bolek V, Garfinkel-Shweky D, Yariv S. The study of the dehydration of smectites by emanation thermal analysis. J Therm Anal. 1997;48:83–92.

    Article  CAS  Google Scholar 

  48. Heller-Kallai L. Thermally modified clay minerals. In: Bergaya F, Theng BKG, Lagaly G, editors. Handbook of clay science. Development in Clay Science, vol. 1. Amsterdam: Elsevier; 2006. p. 289–308.

  49. Drits VA, Besson G, Muller F. An improved model for structural transformation of heat-treated aluminious dioctahedral 2:1 layer silicates. Clays Clay Miner. 1995;43:718–31.

    Article  CAS  Google Scholar 

  50. Emmerich K, Madsen FT, Kahr G. Dehydroxylation behavior of heat-treated and steam-treated homoionic cis-vacant montmorillonites. Clays Clay Miner. 1999;47:591–604.

    Article  CAS  Google Scholar 

  51. Emmerich K. Spontaneous rehydroxylation of a dehydroxylated cis-vacant montmorillonite. Clays Clay Miner. 2000;48:405–8.

    Article  CAS  Google Scholar 

  52. Zviagina BB, Sakharow BA, Drits VA. X-ray diffraction criteria for the identification of trans- and cis-vacant varieties of dioctahedral micas. Clays Clay Miner. 2007;55:467–80.

    Article  CAS  Google Scholar 

  53. Ball MC, Taylor HFW. The dehydroxylation of chrysotile in air and under hydrothermal conditions. Mineral Mag. 1963;33:467–82.

    Article  Google Scholar 

  54. MacKenzie KJD, Mainhold RH. The thermal reactions of synthetic hectorite studies by 29-Si, 25-Mg and 7-Li magic angle spinning nuclear magnetic resonance. Thermochim Acta. 1994;232:85–94.

    Article  CAS  Google Scholar 

  55. Stucki JW, Bish DL. Thermal analysis in clay science. Aurora: The Clay Minerals Society; 1990.

    Google Scholar 

  56. Güler Ç, Sarıer N. Kinetics of the thermal dehydration of acid activated montmorillonite by the rising temperature technique. Thermochim Acta. 1990;159:29–33.

    Article  Google Scholar 

  57. Coats AW, Redfern JP. Kinetic parameters from thermogravimetric data. Nature. 1964;201:68–9.

    Article  CAS  Google Scholar 

  58. Önal M, Sarıkaya Y. Thermal analysis of some organoclays. J Therm Anal Calorim. 2008;91:261–5.

    Article  Google Scholar 

  59. Brunauer S, Emmett PH, Teller E. Adsorption of gases in multimolecular layers. J Am Chem Soc. 1938;60:308–19.

    Article  Google Scholar 

  60. Linsen BG. Physical and chemical aspects of adsorbent and catalysts. London: Academic Press; 1970.

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank to Scientific and Technical Research Council of Turkey (TÜBİTAK) and Ankara University Research Foundation for supporting this work under the project 107T622 and 2003.05.07.083.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Müşerref Önal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bayram, H., Önal, M., Yılmaz, H. et al. Thermal analysis of a white calcium bentonite. J Therm Anal Calorim 101, 873–879 (2010). https://doi.org/10.1007/s10973-009-0626-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-009-0626-y

Keywords

Navigation