Skip to main content
Log in

Thermal properties and liquid crystallinity of side-chain azobenzene copolymer containing pendant polyhedral oligomeric silsequioxanes

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Vinylated polyhedral oligomeric silsesquioxane (POSS-M) was prepared by the reaction of POSS containing amine groups with acrylic acid. Azobenzene liquid crystalline copolymer (LCP-POSS) was then synthesized with 6.0 mol% POSS-M and 94.0 mol% acrylate monomer containing azobenzene liquid crystalline moiety (Azo-M) by free-radical copolymerization. Homopolymer of Azo-M (LCP) was also synthesized under the same conditions. Their thermal properties and liquid crystallinity were characterized by Thermal gravimetric analysis (TG), differential scanning calorimetry (DSC), Wide-angle X-ray diffraction experiments (XRD) and polarized optical micrographs (POM). The results showed that LCP-POSS has higher thermal stability and glass transition temperature than pure LCP due to the incorporation of the rigid cage-like POSS. Especially, LCP-POSS exhibits enantiotropic smectic and nematic liquid crystalline behaviors, its smectic-nematic transition temperature (T SN) and nematic-isotropic transition temperature (T NI) are higher than those of pure LCP, which may promote and extend its applications on stimuli-responsive materials and devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wu Q, Zhang C, Liang R, Wang B. Combustion and thermal properties of epoxy/phenyltrisilanol polyhedral oligomeric silsesquioxane nanocomposites. J Therm Anal Cal. 2009; doi:10.1007/s10973-009-0474-9.

  2. Zeng K, Wang L, Zheng SX, Qian XF. Self-assembly behavior of hepta(3,3,3-trifluoropropyl) polyhedral oligomeric silsesquioxane-capped poly(ξ-caprolactone) in epoxy resin: nanostructures and surface properties. Polymer. 2009;50:85–95.

    Article  Google Scholar 

  3. Fang Y, Chen L, Chen SJ. Facile and quick synthesis of poly(N-methylolacrylamide)/polyhedral oligomeric silsesquioxane graft copolymer hybrids via frontal polymerization. J Polym Sci Polym Chem. 2009;47:1136–47.

    Article  CAS  Google Scholar 

  4. Zhang HX, Shin YJ, Yoon KB, Lee DH. Preparation and properties of propylene/POSS copolymer with rac-Et(Ind)2ZrCl2 catalyst. Eur Polym J. 2009;45:40–6.

    Article  Google Scholar 

  5. Chen YW, Chen L, Nie HR, Kang ET. Low-к nanocomposite films based on polyimides with grafted polyhedral oligomeric silsesquioxane. J Appl Polym Sci. 2006;99:2226–32.

    Article  CAS  Google Scholar 

  6. Fina A, Tabuani D, Peijs T, Camino G. POSS grafting on PPgMA by one-step reactive blending. Polymer. 2009;50:218–26.

    Article  CAS  Google Scholar 

  7. Feng Y, Jia Y, Xu HY. Preparation and thermal properties of hybrid nanocomposites of poly(methyl methacrylate)/octavinyl polyhedral oligomeric silsesquioxane blends. J Appl Polym Sci. 2009;111:2684–90.

    Article  CAS  Google Scholar 

  8. Soto MS, Schiraldi DA, Illescas S. Study of the morphology and properties of melt-mixed polycarbonate-POSS nanocomposites. Eur Polym J. 2009;45:341–52.

    Article  Google Scholar 

  9. Villanueva M, Martín-Iglesias JL, Rodríguez-Añón JA, Proupín-Castiñeiras J. Thermal study of an epoxy system DGEBA (n = 0)/Mxda modified with POSS. J Therm Anal Calorim. 2009;96:2575–82.

    Article  Google Scholar 

  10. Zeng K, Fang Y, Zheng SX. Organic–inorganic hybrid hydrogels involving poly(N isopropylacrylamide) and polyhedral oligomeric silsesquioxane: preparation and rapid thermoresponsive properties. J Polym Sci Polym Phys. 2009;47:504–16.

    Article  CAS  Google Scholar 

  11. Erba IE, Williams RJJ. Epoxy networks modified by multifunctional polyhedral oligomeric silsesquioxane (POSS) containing amine groups. J Therm Anal Calorim. 2008;93:95–100.

    Article  Google Scholar 

  12. Ramírez C, Rico M, Barral L, Díez J, García-Garabal S, Montero B. Organic/inorganic hybrid materials from an epoxy resin cured by an amine silsesquioxane. J Therm Anal Calorim. 2007;87:169–72.

    Article  Google Scholar 

  13. Bian Y, Mijovic J. Molecular dynamics of PEGylated multifunctional polyhedral oligomeric silsesquioxane. Macromolecules. 2009;42:4181–90.

    Article  CAS  Google Scholar 

  14. Seçkin T, Köytepe S, Adıgüzel HI. Molecular design of POSS core star polyimides as a route to low-к dielectric materials. Mater Chem Phys. 2008;112:1040–6.

    Article  Google Scholar 

  15. Zhang WH, Fu BX, Seo Y, Schrag E, Hsiao B, Mather PT, et al. Effect of methyl methacrylate/polyhedral oligomeric silsesquioxane random copolymers in compatibilization of polystyrene and poly(methyl methacrylate) blends. Macromolecules. 2002;35:8029–38.

    Article  CAS  Google Scholar 

  16. Fu BX, Gelfer MY, Hsiao BS, Phillips S, Viers B, Blanski R, et al. Physical gelation in ethylene–propylene copolymer melts induced by polyhedral oligomeric silsesquioxane (POSS) molecules. Polymer. 2003;44:1499–506.

    Article  CAS  Google Scholar 

  17. Mehl GH, Goodby JW. Liquid-crystalline, substituted octakis(dimethylsi1oxy)octasilsesquioxanes: oligomeric supermolecular materials with defined topology. Angew Chem Int Ed. 1996;35:2641–3.

    Article  CAS  Google Scholar 

  18. Elsäßer R, Mehl GH, Goodby JW, Photinos DJ. Nematic silsesquioxanes-towards nanocrystals dispersed in a nematic liquid crystal matrix. Chem Commun; 2000:851–2.

  19. Saez IM, Goodby JW. Preliminary communication supermolecular liquid crystal dendrimers based on the octasilsesquioxane core. Liq Cryst. 1999;26:1101–5.

    Article  CAS  Google Scholar 

  20. Saez IM, Goodby JW. Chiral nematic octasilsesquioxanes. J Mater Chem. 2001;11:2845–51.

    Article  CAS  Google Scholar 

  21. Zhang CX, Bunning TJ, Laine RM. Synthesis and characterization of liquid crystalline silsesquioxanes. Chem Mater. 2001;13:3653–62.

    Article  CAS  Google Scholar 

  22. Sellinger A, Laine RM, Chu V, Viney C. Palladium- and platinum-catalyzed coupling reactions of allyloxy aromatics with hydridosilanes and hydridosiloxanes: novel liquid crystalline/organosilane materials. J Polym Sci Polym Chem. 1994;32:3069–89.

    Article  CAS  Google Scholar 

  23. Kim KM, Chujo Y. Liquid-crystalline organic-inorganic hybrid polymers with functionalized silsesquioxanes. J Polym Sci Polym Chem. 2001;39:4035–43.

    Article  CAS  Google Scholar 

  24. Wu YL, Zhang QJ, Kanazawa A, Shiono T, Ikeda T, Nagase Y. Photoinduced alignment of polymer liquid crystals containing azobenzene moieties in the side chain. 5. Effect of the azo contents on alignment behavior and enhanced response. Macromolecules. 1999;32:3951–6.

    Article  CAS  Google Scholar 

  25. Yang YK, Wang XT, Liu L, Xie XL, Yang ZF, Li RKY, et al. Structure and photoresponsive behaviors of multiwalled carbon nanotubes grafted by polyurethanes containing azobenzene side chains. J Phys Chem C. 2007;111:11231–7.

    Article  CAS  Google Scholar 

  26. Stewart D, Imrie CT. Synthesis and characterization of spin-labelled and spin-probed side-chain liquid crystal polymers. Polymer. 1996;37:3419–25.

    Article  CAS  Google Scholar 

  27. Haitjema HJ, Buruma R, Alberd GOR, Tan YY, Challa G. New photoresponsive (meth)acrylate (co)polymers containing azobenzene pendant side groups with carboxylic and dimethylamino substituents-II. Synthesis and characterization of polymers and copolymers. Eur Polym J. 1996;32:1447–551.

    Article  CAS  Google Scholar 

  28. Krishnamurthy R, Kannan P. Synthesis and characterization of α-methylstilbene and azobenzene-based thermotropic liquid crystalline polymers. Polym Int. 2006;55:151–7.

    Article  Google Scholar 

  29. Walther M, Faulhammer H, Finkelmann H. On the thread-like morphology of LC/I block copolymers in nematic solvents. Macromol Chem Phys. 1998;199:223–37.

    Article  CAS  Google Scholar 

  30. Cui L, Tong X, Yan XH, Liu GJ, Zhao Y. Photoactive thermoplastic elastomers of azobenzene-containing triblock copolymers prepared through atom transfer radical polymerization. Macromolecules. 2004;37:7097–104.

    Article  CAS  Google Scholar 

  31. Zheng L, Waddon AJ, Farris RJ, Coughlin EB. X-ray characterizations of polyethylene polyhedral oligomeric silsesquioxane copolymers. Macromolecules. 2002;35:2375–9.

    Article  CAS  Google Scholar 

  32. Markovic E, Matisons J, Hussain M, Simon GP. Poly(ethylene glycol) octafunctionalized polyhedral oligomeric silsesquioxane:WAXD and rheological studies. Macromolecules. 2007;40:4530–4.

    Article  CAS  Google Scholar 

  33. Xu HY, Kuo SW, Lee JS, Chang FC. Preparations, thermal properties, and Tg increase mechanism of inorganic/organic hybrid polymers based on polyhedral oligomeric silsesquioxane. Macromolecules. 2002;35:8788–93.

    Article  CAS  Google Scholar 

  34. Virgil P, Andrew K. A thermodynamic interpretation of polymer molecular weight effect on the phase transitions of main-chain and side-chain liquid-crystal polymers. Macromolecules. 1990;23:4347–50.

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful for the financial support provided by the Outstanding Youth Fund of the National Natural Science Foundation of China (50825301), Natural Science Foundation of Hubei Province (2009CDB257), and Open Fund of State Key Laboratory of Plastic Forming Simulation and Die and Mould Technology of HUST. We are also grateful for Analytical and Testing Center of Huazhong University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong-Gui Liao or Xiao-Lin Xie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, XT., Yang, YK., Yang, ZF. et al. Thermal properties and liquid crystallinity of side-chain azobenzene copolymer containing pendant polyhedral oligomeric silsequioxanes. J Therm Anal Calorim 102, 739–744 (2010). https://doi.org/10.1007/s10973-010-0772-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-010-0772-2

Keywords

Navigation