Skip to main content
Log in

Thermal properties of Ca(II) and Cd(II) complexes of pyridinedicarboxylates

Correlation with crystal structures

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The thermal behavior of [Ca(H2O)3(2,3-pydcH)2] n (I), [Cd(H2O)3(2,3-pydc)] n (II), and [Cd(H2O)6][Cd(2,3-pydcH)3]2 (III) complexes with pyridine-2,3-dicarboxylic acid was monitored by TG, DTG, and DSC analysis, where 2,3-pydcH—mono deprotonated pyridine-2,3-dicarboxylic acid and 2,3-pydc—doubly deprotonated dicarboxylate anion. Thermal decomposition of these compounds go through one or two dehydratation stages, followed by the loss of organic matter. The final decomposition products are found to be the corresponding metal oxides. The possible scheme of destruction of the complexes have been used to reveal the relationships between stability and molecular structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2
Scheme 3
Scheme 4

Similar content being viewed by others

References

  1. Berglund M, Akesson A, Bjellerup P, Vahter M. Metal–bone interactions. Toxicol Lett. 2000;112–113:219–25.

    Article  Google Scholar 

  2. Järup L, Alfvén T. Low level cadmium exposure, renal and bone effects—the OSCAR study. Biometals. 2004;17:505–9.

    Article  Google Scholar 

  3. Kazantis G. Cadmium, osteoporosis and calcium metabolism. Biometals. 2004;17:493–8.

    Article  Google Scholar 

  4. Yocum ChF. The calcium and chloride requirements of the O2 evolving complex. Coord Chem Rev. 2008;252:296–305.

    Article  CAS  Google Scholar 

  5. Marelli A, Russelet E, Dycke C, Bouron A, Moulis JM. Cadmium toxicity in animal cells by interference with essential metals. Biochimie. 2006;88:1807–14.

    Article  Google Scholar 

  6. Iwahashi H, Kawamori H, Fukudhima K. Quinolinic acid, α-picolinic acid, fusaric acid, and 2,6-pyridinedicarboxylic acid enhance the Fenton reaction in phosphate buffer. Chem Bio Interact. 1999;118:201–15.

    Article  CAS  Google Scholar 

  7. Suga T, Okabe N. Bis(pyridine-2,3-dicarboxylato-N,O)copper(II). Acta Crystallogr. 1996;Sect. C52:1410–2.

    Google Scholar 

  8. Patrick BO, Stevens CL, Storr A, Thompson RC. Structural and magnetic properties of three copper(II) pyridine-2,3-dicarboxylate coordination polymers incorporating the same chain motif. Polyhedron. 2003;22:3025–35.

    Article  CAS  Google Scholar 

  9. Okabe N, Miura J, Shimosaki A. A hydrated cobalt(II) complex of quinolinic acid: trans-[Co(C7H4NO4)2(H2O)2]. Acta Crystallogr. 1996;Sect. C52:1610.

    Google Scholar 

  10. Sengupta P, Ghosh S, Mak TCW. A new route for the synthesis of bis(pyridine dicarboxylato)bis(triphenylphosphine) complexes of ruthenium(II) and X-ray structural characterisation of the biologically active trans-[Ru(PPh3)2(L1H)2] (L1H2 = pyridine 2,3-dicarboxylic acid). Polyhedron. 2001;20:975.

    Article  CAS  Google Scholar 

  11. Starosta W, Leciejewicz J. Catenated polymeric molecular patterns in structures of two calcium(II) complexes with pyridine-2,3-dicarboxylate (quinolinic) and water ligands. J Coord Chem. 2009;62:1240–8.

    Article  CAS  Google Scholar 

  12. Han ZB, Ma X, Sun ZG, You WS. Hydrothermal synthesis, crystal structure and photoluminescent properties of a novel 3-D coordination polymer [Cd2(pydc)2(H2O)] n (pydc = pyridine-2, 3-dicarboxylate). Inorg Chem Commun. 2006;9:844–7.

    Article  CAS  Google Scholar 

  13. Li LJ, Li YJ. Hydrothermal synthesis and crystal structure of a novel 2-D coordination polymer [Mn2(pdc)2(H2O)3] n 2nH2O (pdc = pyridine-2,3-dicarboxylate). Mol Struct. 2004;694:199–203.

    Article  CAS  Google Scholar 

  14. Shit S, Chakraborty J, Sen S, Pilte G, Deplanches C, Mitra SJ. A novel mixed ligand coordination polymer of copper(II): synthesis, characterisation and magneto-structural correlation. Mol Struct. 2008;891:19–24.

    Article  CAS  Google Scholar 

  15. Mendoza-Diaz G, Rigotti G, Pio OE, Sileo EE. Solid-state 111Cd NMR studies on cadmium(II)-2, x-pyridinedicarboxylates. Crystal structure of 2,4-pyridinedicarboxylato triaqua cadmium(II) hemihydrate: [Cd(II)(2,4-pydc)(H2O)3]·1/2H2O. Polyhedron. 2005;24:777–83.

    Article  CAS  Google Scholar 

  16. Yin H, Liu SX. Copper and zinc complexes with 2,3-pyridinedicarboxylic acid or 2,3-pyrazinedicarboxylic acid: polymer structures and magnetic properties. J Mol Struct. 2009;918:165–73.

    Article  CAS  Google Scholar 

  17. Barszcz B, Hodorowicz M, Jabłońska-Wawrzycka A, Masternak J, Nitek W, Stadnicka K. Comparative study on Cd(II) and Ca(II) model complexes with pyridine-2, 3-dicarboxylic acid. Synthesis, crystal structure and spectroscopic investigation. Polyhedron. 2010;29:1191–200.

    Article  CAS  Google Scholar 

  18. Vogel AI. Quantitative Inorganic Analysis. 3rd ed. England: Longman Group Ltd; 1973.

    Google Scholar 

  19. Shi Q, Cao R, Sun D-F, Hong M-C, Liang Y-C. Solvothermal syntheses and crystal structures of two metal coordination polymers with double-chain structures. Polyhedron. 2001;20:3287.

    Article  CAS  Google Scholar 

  20. Nakamoto K. Infrared Spectra of Inorganic and Coordination Compounds. 2nd ed. New York: Wiley Interscience; 1970. p. 230.

    Google Scholar 

  21. Olczak-Kobza M, Mrozek A. Zinc(II) and cadmium(II) complexes with o-hydroxybenzoic acid or o-aminobenzoic acid and 2-methylimidazole. IR spectra, X-ray diffraction studies and thermal analysis. J Therm Anal Calorim. 2009;96:555.

    Article  Google Scholar 

  22. Deacon GB, Philips RJ. Relationship between the carbn-oxygen stretching frequencies of carboxylate and the type of carboxylate coordination. Coord Chem Rev. 1980;33:227–50.

    Article  CAS  Google Scholar 

  23. Takusagawa F, Koetzle TF. Refinement of the crystal structure of quinolinic acid at 100 K with neutron diffraction data. Acta Crystallogr. 1978;Sect. B 34:1149–54.

    Google Scholar 

  24. Krick A, Koetzle TF, Thomas R, Takusagawa FJ. Hydrogen bonds studies*. 85. A very short, asymmetrical intramolecular hydrogen bond: a neutron diffraction study of pyridine-2,3-dicarboxylic study (C7H5NO4). Chem Phys. 1974;60:3866.

    Google Scholar 

  25. Souaya ER, Ismail EH, Mohamed AA, Milad NE. Preparation, characterization and thermal studies of some transition metal ternary complexes. J Therm Anal Calorim. 2009;95:254.

    Article  Google Scholar 

  26. Powder Diffraction File, JCPDS: ICDD, 1601 Park Lane, Swarthmore, PA 19081, Data 1990, File no. 5–640.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Barszcz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barszcz, B., Masternak, J. & Surga, W. Thermal properties of Ca(II) and Cd(II) complexes of pyridinedicarboxylates. J Therm Anal Calorim 101, 633–639 (2010). https://doi.org/10.1007/s10973-010-0877-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-010-0877-7

Keywords

Navigation