Skip to main content
Log in

On the thermal degradation of cellulose in cotton fibers

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Thermal decomposition of cellulose has been widely studied for the past several years. It has been reported that the source of cellulose and its composition greatly affect its pyrolysis. One of the most widely used analytical tools for the study of cellulose pyrolysis is thermogravimetric (TG) analysis. Several model-fitting methods have been employed to study cellulose pyrolysis kinetics. An alternative to the model-fitting approach is the so-called model-free method developed by Vyazovkin. This isoconversional technique calculates the activation energy as a function of the degree of the conversion. In this article, the pyrolysis of cellulose in cotton fibers compared to microcrystalline cellulose (Avicel, PH 105) was investigated. TG curves were acquired as a function of the heating rates (4, 5, 8, 10, and 16 °C min−1) and the model-free method was used to analyze the data. Activation energies of cotton fibers and Avicel were obtained, and compared to the data reported in the literature. In addition, models for isothermal decomposition were calculated and compared with experimental data at the same temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Antal MJJ, Varhegyi G. Cellulose pyrolysis kinetics: the current state of knowledge. Ind Eng Chem Res. 1995;34:703–17.

    Article  CAS  Google Scholar 

  2. Abidi N, Hequet E, Cabrales L, Gannaway J, Wilkins T, Wells LW. Evaluating cell wall structure and composition of developing cotton fibers using Fourier transform infrared spectroscopy and thermogravimetric analysis. J App Polym Sci. 2008;107:476–86.

    Article  CAS  Google Scholar 

  3. Abidi N, Hequet E, Ethridge D. Thermogravimetric analysis of cotton fibers: relationships with maturity and fineness. J App Polym Sci. 2007;103:3476–82.

    Article  CAS  Google Scholar 

  4. Vyazovkin S. Model-free kinetics—staying free of multiplying entities without necessity. J Therm Anal Calorim. 2006;83:45–51.

    Article  CAS  Google Scholar 

  5. Vyazovkin S, Sbirrazzuoli N. Isoconversional kinetic analysis of thermally stimulated processes in polymers. Macromol Rapid Commun. 2006;27:1515–32.

    Article  CAS  Google Scholar 

  6. Chowlu ACK, Reddy PK, Ghoshal AK. Pyrolytic decomposition and model-free kinetics analysis of mixture of polypropylene (PP) and low-density polyethylene (LDPE). Thermochim Acta. 2009;485:20–5.

    Article  CAS  Google Scholar 

  7. Vyazovkin S, Wight CA. Model-free and model-fitting approaches to kinetic analysis of isothermal and nonisothermal data. Thermochim Acta. 1999;341:53–68.

    Article  Google Scholar 

  8. Ramajo-Escalera B, Espina A, Garcia JR, Sosa-Arnao JH, Nebra SA. Model-free kinetics applied to sugarcane bagasse combustion. Thermochim Acta. 2006;448:111–6.

    Article  CAS  Google Scholar 

  9. Vyazovkin S, Vincent L, Sbirrazzuoli N. Thermal denaturation of collagen analyzed by isoconversional method. Macromol Biosci. 2007;7:1181–6.

    Article  CAS  Google Scholar 

  10. Khawam A, Flanagan DR. Role of isoconversional methods in varying activation energies of solid-state kinetics—I. Isothermal kinetic studies. Thermochim Acta. 2005;429:93–102.

    Article  CAS  Google Scholar 

  11. Saha B, Maiti AK, Ghoshal AK. Model-free method for isothermal and non-isothermal decomposition kinetics analysis of PET sample. Thermochim Acta. 2006;444:46–52.

    Article  CAS  Google Scholar 

  12. Vyazovkin S. Advanced isoconversional method. J Therm Anal. 1997;49:1493–9.

    Article  CAS  Google Scholar 

  13. Abidi N, Hequet E, Cabrales L. Changes in sugar composition and cellulose content during the secondary cell wall biogenesis in cotton fibers. Cellulose. 2009; doi:10.1007/s10570-009-9364-3.

  14. Opfermann JR, Kaisersberger E, Flammersheim HJ. Model-free analysis of thermoanalytical data-advantages and limitations. Thermochim Acta. 2002;391:119–27.

    Article  CAS  Google Scholar 

  15. Gronli M, Antal MJ, Varhegyi G. A round-robin study of cellulose pyrolysis kinetics by thermogravimetry. Ind Eng Chem Res. 1999;38:2238–44.

    Article  CAS  Google Scholar 

  16. Calahorra ME, Cortázar M, Eguiazábal JI, Guzmán GM. Thermogravimetric analysis of cellulose: effect of the molecular weight on thermal decomposition. J App Polym Sci. 1989;37:3305–14.

    Article  CAS  Google Scholar 

  17. Timpa JD. Application of universal calibration in gel-permeation chromatography for molecular-weight determinations of plant-cell wall polymers—cotton fiber. J Agric Food Chem. 1991;39:270–5.

    Article  CAS  Google Scholar 

  18. Timpa JD, Triplett BA. Analysis of cell-wall polymers during cotton fiber development. Planta. 1993;189:101–8.

    Article  CAS  Google Scholar 

  19. Varhegyi G, Antal MJ, Szekely T, Till F, Jakab E. Simultaneous thermogravimetric mass-spectrometric studies of the thermal-decomposition of bio-polymers. 1. Avicel cellulose in the presence and absence of catalysts. Energy Fuels. 1988;2:267–72.

    Article  CAS  Google Scholar 

  20. Lin YC, Cho J, Tompsett GA, Westmoreland PR, Huber GW. Kinetics and mechanism of cellulose pyrolysis. J Phys Chem C. 2009;113:20097–107.

    Article  CAS  Google Scholar 

  21. Antal MJ, Varhegyi G, Jakab E. Cellulose pyrolysis kinetics: revisited. Ind Eng Chem Res. 1998;37:1267–75.

    Article  CAS  Google Scholar 

  22. Capart R, Khezami L, Burnham AK. Assessment of various kinetic models for the pyrolysis of a microgranular cellulose. Thermochim Acta. 2004;417:79–89.

    Article  CAS  Google Scholar 

  23. Eom Y, Kim S, Kim SS, Chung SH. Application of peak property method for estimating apparent kinetic parameters of cellulose pyrolysis reaction. J Ind Eng Chem. 2006;12:846–52.

    CAS  Google Scholar 

  24. Yang PY, Kokot S. Thermal analysis of different cellulosic fabrics. J Appl Polym Sci. 1996;60:1137–46.

    Article  CAS  Google Scholar 

  25. Mack CH, Donaldson DJ. Effects of bases on the pyrolysis of cotton cellulose. Text Res J. 1967;37:1063–71.

    Article  CAS  Google Scholar 

  26. Chatterjee PK, Conrad C. Kinetics of the pyrolysis of cotton cellulose. Text Res J. 1966;36:487–94.

    Article  CAS  Google Scholar 

  27. Yao F, Wu QL, Lei Y, Guo WH, Xu YJ. Thermal decomposition kinetics of natural fibers: activation energy with dynamic thermogravimetric analysis. Polym Degrad Stabil. 2008;93:90–8.

    Article  CAS  Google Scholar 

  28. Corradini E, Teixeira EM, Paladin PD, Agnelli JA, Silva O, Mattoso LHC. Thermal stability and degradation kinetic study of white and colored cotton fibers by thermogravimetric analysis. J Therm Anal Calorim. 2009;97:415–9.

    Article  CAS  Google Scholar 

  29. Vyazovkin S. What can model free kinetics tell us about reaction mechanisms? Mettler Toledo User Commun. 1999;10:9–10.

    Google Scholar 

  30. Mamleev V, Bourbigot S, Yvon J. Kinetic analysis of the thermal decomposition of cellulose: the main step of mass loss. J Anal Appl Pyrolysis. 2007;80:151–65.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Texas Department of Agriculture, Food and Fibers Research Grant Program for providing financial support for this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noureddine Abidi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cabrales, L., Abidi, N. On the thermal degradation of cellulose in cotton fibers. J Therm Anal Calorim 102, 485–491 (2010). https://doi.org/10.1007/s10973-010-0911-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-010-0911-9

Keywords

Navigation