Skip to main content
Log in

Stability of cross-linked acetic acid lignin-containing polyurethane

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The thermo-oxidative stability of acetic acid lignin-containing polyurethane (LPU) that contains cross-linking agents, such as 1-aminopropyltriethoxy-silane (APTS) and/or trimethylolpropane (TMP) was investigated based on the thermogravimetric analysis (TGA) method, their kinetic parameters in the thermo-oxidative process was determined. FT-IR certified the occurrence of interaction between lignin and polyurethane (PU). It was found that continuous membrane can be formed when lignin concentration was 43.3%, but rupture took place when it increased to 50%. When the degradation was performed in nitrogen, TG and dynamic differential thermogravimetry (DTG) results demonstrated that the PU underwent three stages of degradation while the LPU involved one main degradation stage with a shoulder, and the degradation stability increased with the increase in the lignin concentration and PEG length. It was also found that the addition of a cross-linking agent is beneficial to the improvement of thermal stability and, in particular, APTS gave the best thermal stability for the LPU produced, among the cross-linking agents tested. Furthermore, LPU exhibited multistage degradation process in air and displayed higher thermo-oxidative stability than PU. At the same time, the kinetic study showed that LPU modified with APTS exhibited higher activation energy than LPU modified with TMP. And the maximum activation energy was found for the sample modified with the simultaneous addition of APTS and TMP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Zhang LN, Huang J. Effects of nitrolignin on mechanical properties of polyurethane—nitrolignin films. J Appl Polym Sci. 2001;80:1213–9.

    Article  CAS  Google Scholar 

  2. Lora JH, Glasser WG. Recent industrial applications of lignin: a sustainable alternative to nonrenewable materials. J Polym Environ. 2002;10:39–48.

    Article  CAS  Google Scholar 

  3. Hatakeyama T, Izuta Y, Hirose S, Hatakeyama H. Phase transitions of lignin-based polycaprolactones and their polyurethane derivatives. Polymer. 2002;43:1177–82.

    Article  CAS  Google Scholar 

  4. Hatakeyama H, Hatakeyama T. Environmentally compatible hybrid-type polyurethane foams containing saccharide and lignin components. Macromol Symp. 2005;224:219–26.

    Article  CAS  Google Scholar 

  5. Nadji H, Bruzzèse C, Belgacem MN, Benaboura A, Gandini A. Oxypropylation of lignins and preparation of rigid polyurethane foams from the ensuing polyols. Macromol Mater Eng. 2005;290:1009–16.

    Article  CAS  Google Scholar 

  6. Akhtar T, Lutfullah G, Nazli R. Synthesis of lignin based phenolic resin and its utilization in the exterior grade plywood. J Chem Soc Pak. 2009;31:304–8.

    CAS  Google Scholar 

  7. Ibrahim MNM, Ghani AMd, Zakaria N, Shuib S, Sipaut CS. Formulation of an environmentally friendly adhesive for wood. Macromol Symp. 2008;274:37–42.

    Article  Google Scholar 

  8. Bonini C, D’Auria M, Emanuele L, Ferri R, Pucciariello R, Sabia AR. Polyurethanes and polyesters from lignin. J Appl Polym Sci. 2005;98:1451–6.

    Article  CAS  Google Scholar 

  9. Michinobu T, Hishida M, Sato M, Katayama Y, Masai E, Nakamura M, et al. Polyesters of 2-pyrone-4,6-dicarboxylic acid (PDC) obtained from a metabolic intermediate lignin. Polym J. 2008;40:68–75.

    Article  CAS  Google Scholar 

  10. Kubo S, Kadla JF. Poly(ethylene oxide)/organosolv lignin blends: relationship between thermal properties, chemical structure, and blend behavior. Macromolecules. 2004;37:6904–11.

    Article  CAS  Google Scholar 

  11. Cazacu G, Mihaies M, Pascu MC, Profire L, Kowarskik AL, Vasile C. Polyolefin/lignosulfonate blends, 9 functionalized polyolefin/lignin blends. Macromol Mater Eng. 2004;289:880–9.

    Article  CAS  Google Scholar 

  12. Cazacu G, Pascu MC, Profile L, Kowarski AI, Mihaes M, Vasile C. Lignin role in a complex polyolefin blend. Ind Crop Prod. 2004;20:261–73.

    Article  CAS  Google Scholar 

  13. Li Y, Sarkanen S. Alkylated kraft lignin-based thermoplastic blends with aliphatic polyesters. Macromolecules. 2002;35:9707–15.

    Article  CAS  Google Scholar 

  14. Wu RL, Wang XL, Li F, Li HZ, Wang YZ. Green composite films prepared from cellulose, starch and lignin in room-temperature ionic liquid. Bioresour Technol. 2009;100:2569–74.

    Article  CAS  Google Scholar 

  15. Wei M, Fan L, Huang J, Ai FJ, Fan LH, Zheng H. Role of star-like hydroxylpropyl lignin on properties of soy protein plastics. Macromol Mater Eng. 2006;291:524–30.

    Article  CAS  Google Scholar 

  16. Jahan MS, Chowdhury DAN, Islam MK. Atmospheric formic acid pulping and TCF bleaching of dhaincha (Sesbania aculeate), kash (Saccharum spontaneum) and banana stem (Musa cavendish). Ind Crop Prod. 2007;26:324–31.

    Article  CAS  Google Scholar 

  17. Ligero P, Villaverde JJ, de Vega A, Bao M. Delignification of eucalyptus globulus saplings in two organosolv systems (formic and acetic acid) preliminary analysis of dissolved lignins. Ind Crop Prod. 2008;27:110–7.

    Article  CAS  Google Scholar 

  18. Thring RW, Chornet E, Overend RP. Fractionation of woodmeal by prehydrolysis and thermal organosolv. Process strategy, recovery of constituents, and solvent fractionation of lignins so produced. Can J Chem Eng. 1993;71:116–23.

    Article  CAS  Google Scholar 

  19. Pye EK, Lora JH. The Alcell process: an alternative to kraft pulping. Tappi J. 1991;74:113–7.

    CAS  Google Scholar 

  20. Ni Y, Van Heiningen ARP, Lora J, Magdzinski L, Pye EK. A novel ozone bleaching technology for the ALCELL process. J Wood Chem Technol. 1996;16:367–80.

    Article  CAS  Google Scholar 

  21. Ni Y, Hu Q. Alcell lignin solubility in ethanol-water mixtures. J Appl Polym Sci. 1995;57:1441–6.

    Article  CAS  Google Scholar 

  22. Pan X, Sano Y. Fractionation of wheat straw by atmospheric acetic acid process. Bioresour Technol. 2005;96:1256–63.

    Article  CAS  Google Scholar 

  23. Poppius L, Mustonen KR, Huovila T, Sundquist J. MILOX pulping with acetic acid/peroxyacetic acid. Paperi ja Puu. 1991;73:154–8.

    Google Scholar 

  24. Jahan MS. Studies on the effect of prehydrolysis and amine in cooking liquor on producing dissolving pulp from jute (Corchorus capsularis). Wood Sci Technol. 2009;43:213–24.

    Article  CAS  Google Scholar 

  25. Vanderlaan MN, Thring RW. Polyurethanes from Alcell lignin fractions obtained by sequential solvent extraction. Biomass Bioenerg. 1998;14:525–31.

    Article  CAS  Google Scholar 

  26. Reimann A, Mörck R, Yoshida H, Hatakeyama H, Kringstad KP. Kraft lignin in polyurethanes III. Effects of the molecular weight of PEG on the properties of polyurethanes from a kraft lignin-PEG-MDI system. J Appl Polym Sci. 1990;41:39–50.

    Article  CAS  Google Scholar 

  27. Reimann A, Mörck H, Hatakeyama H, Kringstad KP. Effects of the structure of lignin on the properties of lignin-based polyurethanes. Sixth international symposium on wood and pulping chemistry; 1991, p. 523.

  28. Rials TG, Glasser WG. Engineering plastics from lignin. 5. Effect of crosslink density on polyurethane film properties-variation in polyol hydroxyl content. Holzforschung. 1984;38:263–9.

    Article  CAS  Google Scholar 

  29. Fan QC, Xiao CB. Effects of crosslinking density on structure and properties of interpenetrating polymer networks from polyurethane and nitroguar gum. Polym Compos. 2008;29:758–67.

    Article  CAS  Google Scholar 

  30. Chiou BS, Schoen PE. Effect of crosslinking on thermal and mechanical properties of polyurethanes. J Appl Polym Sci. 2002;83:212–23.

    Article  CAS  Google Scholar 

  31. Li XR, Fei GQ, Wang HH. Mechanical and surface properties of membranes prepared from waterborne cationic hydroxyl-terminated polydimethylsiloxane/polyurethane surfactant-free micro-emulsion. J Appl Polym Sci. 2006;100:40–6.

    Article  CAS  Google Scholar 

  32. Chen S, Sui J, Chen L, Pojman JA. Polyurethane-nanosilica hybrid nanocomposites synthesized by frontal polymerization. J Polym Sci. 2005;43:1670–80.

    CAS  Google Scholar 

  33. Chen S, Sui J, Chen L. Positional assembly of hybrid polyurethane nanocomposites via incorporation of inorganic building blocks into organic polymer. Colloid Polym Sci. 2004;283:66–73.

    Article  CAS  Google Scholar 

  34. Agić A, Bajsić EG. Strategy for kinetic parameter estimation-thermal degradation of polyurethane elastomers. J Appl Polym Sci. 2007;103:764–72.

    Article  Google Scholar 

  35. Hatakeyama H, Kosugi R, Hatakeyama T. Thermal properties of lignin- and molasses-based polyurethane foams. J Therm Anal Calorim. 2008;92:419–24.

    Article  CAS  Google Scholar 

  36. Joshi P, Madras G. Degradation of polycaprolactone in supercritical fluids. Polym Degrad Stabil. 2008;93:1901–8.

    Article  CAS  Google Scholar 

  37. Barral L, Cano J, Lpez J, Lόpez-Bueno I, Nogueira P, Abad MJ, Ramírez C. Decomposition behavior of epoxy-resin systems cured by diamines. Eur Polym J. 2000;36:1231–40.

    Article  CAS  Google Scholar 

  38. Ciobanu C, Ungureanu M, Ignat L, Ungureanu D, Popa VI. Properties of lignin-polyurethane films prepared by casting method. Ind Crop Prod. 2004;20:231–41.

    Article  CAS  Google Scholar 

  39. Hirose S, Kobashigawa K, Izuta Y, Hatakeyama H. Thermal degradation of polyurethanes containing lignin studied by TG-FTIR. Polym Int. 1998;47:247–56.

    Article  CAS  Google Scholar 

  40. Hatakeyama H, Nakayachi A, Hatakeyama T. Thermal and mechanical properties of polyurethane-based geocomposites derived from lignin and molasses. Composites A. 2005;36:698–704.

    Article  Google Scholar 

  41. Wang TL, Hsieh TH. Effect of polyol structure and molecular weight on the thermal stability of segmented poly (urethaneureas). Polym Degrad Stabil. 1997;55:95–102.

    Article  CAS  Google Scholar 

  42. Wang HH, Shen YD, Fei GQ, Li XR, Liang Y. Micromorphology and phase behavior of cationic polyurethane segmented copolymer modified with hydroxysilane. J Colloid Interface Sci. 2008;324:36–41.

    Article  CAS  Google Scholar 

  43. Guo TY, Chen X, Song MD, Zhang BH. Preparation and properties of Core [poly(styrene-n-butyl acrylate)]-shell [poly (styrene-methyl methacrylate-vinyl triethoxide silane)] structured latex particles with self-crosslinking characteristics. J Appl Polym Sci. 2006;100:1824–30.

    Article  CAS  Google Scholar 

  44. Xiao HX, Yang S, Kresta JE, Frisch KC, Higley DP. Thermostability of urethane elastomers based on p-phenylene diisocyanate. J Elastomers Plast. 1994;26:237.

    Article  CAS  Google Scholar 

  45. Ferguson J, Petrovic Z. Thermal stability of segmented polyurethanes. Eur Polym J. 1976;12:177–81.

    Article  CAS  Google Scholar 

  46. Herrera M, Matuschek G, Kettrup A. Main products and kinetics of the thermal degradation polyamides. Chemosphere. 2001;42:601–7.

    Article  CAS  Google Scholar 

  47. Herrera M, Matuschek G, Kettrup A. Thermal degradation of thermoplastic polyurethane elastomers (TPU) based on MDI. Polym Degrad Stabil. 2002;78:323–31.

    Article  CAS  Google Scholar 

  48. Shieh YT, Chen HT, Liu KH, Twu YK. Thermal degradation of MDI-based segmented polyurethanes. J Polym Sci. 1999;37:4126–34.

    Google Scholar 

Download references

Acknowledgements

The authors express sincere thanks to NSERC CRD grant (CRDPJ 363811-07), the Canada Research Chairs program, National Natural Science Foundation of China (20086093), Natural Science Foundation of Shaanxi Province (2009JQ2004) and Foundation of Shaanxi University of Science & Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haihua Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, H., Ni, Y., Jahan, M.S. et al. Stability of cross-linked acetic acid lignin-containing polyurethane. J Therm Anal Calorim 103, 293–302 (2011). https://doi.org/10.1007/s10973-010-1052-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-010-1052-x

Keywords

Navigation