Skip to main content
Log in

DSC investigation of nanocrystalline TiO2 powder

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The aim of the article is to investigate the influence of particle size on titanium dioxide phase transformations. Nanocrystalline titanium dioxide powder was obtained through a hydrothermal procedure in an aqueous media at high pressure (in the range 25–100 atm) and low temperature (≤200 °C). The as-prepared samples were characterized with respect to their composition by ICP (inductive coupled plasma), structure and morphology by XRD (X-ray diffraction), and TEM (transmission electron microscopy), thermal behavior by TG (thermogravimetry) coupled with DSC (differential scanning calorimetry). Thermal behavior of nanostructured TiO2 was compared with three commercial TiO2 samples. The sequence of brookite–anatase–rutile phase transformation in TiO2 samples was investigated. The heat capacity of anatase and rutile in a large temperature range are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Wells AF. Structural inorganic chemistry. 4th ed. Oxford: Clarendon Press; 1975.

    Google Scholar 

  2. Dagan G, Tomkiewicz M. Titanium dioxide aerogels for photocatalytic decontamination of aquatic environments. J Phys Chem. 1993;97:12651–5.

    Article  CAS  Google Scholar 

  3. Wei ZB, Yan W, Zhang H, Ren T, Xin Q, Li Z. Hydrodesulfurization activity of NiMo/TiO2#Al2O3 catalysts. Appl Catal A Gen. 1998;167:39–48.

    Article  CAS  Google Scholar 

  4. Zhang HZ, Banfield JF. Thermodynamic analysis of phase stability of nanocrystalline titania. J Mater Chem. 1998;8:2073–6.

    Article  CAS  Google Scholar 

  5. Gribb AA, Banfield JF. Particle size effects on transformation kinetics and phase stability in nanocrystalline TiO 2. Am Mineral. 1997;82:717–28.

    CAS  Google Scholar 

  6. Matos BR, Aricó EM, Linardi M, Ferlauto AS, Santiago EI, et al. Thermal properties of Nafion–TiO2 composite electrolytes for PEM fuel cell. J Therm Anal Calorim. 2009;97(2):591–4.

    Article  CAS  Google Scholar 

  7. Madarász J, Brăileanu A, Crişan M, Răileanu M, Pokol G. Evolved gas analysis of amorphous precursors for S-doped TiO2 by TG-FTIR and TG/DTA-MS.Part 3. Candidate from thiourea and Ti(IV)-ethoxide. J Therm Anal Calorim. 2009;97(1):265–71.

    Article  Google Scholar 

  8. Crişan M, Brăileanu A, Crişan D, Răileanu M, Drăgan N, et al. Thermal behaviour study of some sol-gel TiO2 based materials. J Therm Anal Calorim. 2008;92(1):7–13.

    Article  Google Scholar 

  9. Greenwood, Norman N, Earnshaw A. Chemistry of the elements. Oxford: Pergamon; 1984.

    Google Scholar 

  10. Riedel R, Wei I, editors. Ceramics science and technology: properties, vol. 2. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2010.

    Google Scholar 

  11. Heald EF, Weiss CW. Kinetics and mechanism of the anatase/rutile transformation, as catalyzed by ferric oxide and reducing conditions. Am Mineral. 1972;57:10–23.

    CAS  Google Scholar 

  12. Wang Z, Deng X. Al2O3 composite agent effects on phase transformation of nanometer TiO2 powder. Mater Sci Eng B. 2007;140:109–13.

    Article  CAS  Google Scholar 

  13. Huberty J, Xu H. Kinetics study on phase transformation from titania polymorph brookite to rutile. J Solid State Chem. 2008;181:508–14.

    Article  CAS  Google Scholar 

  14. Daβler A, Feltz A, Jung J, Ludwig W, Kaisersberger E. Characterization of rutile and anatase powders by thermal analysis. J Therm Anal Calorim. 1988;33:803–9.

    Article  Google Scholar 

  15. Li J-G, Ishigaki T. Brookite → rutile phase transformation of TiO2 studied with monodispersed particles. Acta Mater. 2004;52:5143–50.

    Article  CAS  Google Scholar 

  16. Zhang HZ, Banfield JF. Understanding polymorphic phase transformation behavior during growth of nanocrystalline aggregates: insights from Tio2. J Phys Chem B. 2000;104:3481–7.

    Article  CAS  Google Scholar 

  17. Ranade MR, Navrotsky A, Zhang HZ, Banfield HZ, Elder SH, Zaban A, Borse PH, Kulkarni SK, Doran GS, Whitfield HJ. Energetics of nanocrystalline TiO2. Proc Natl Acad Sci USA. 2002;99(2):6476–81.

    Article  CAS  Google Scholar 

  18. Yoganarasimhan SR, Rao CNR. Mechanism of crystal structure transformations. Part 3.—factors affecting the anatase-rutile transformation. Trans Faraday Soc. 1962;58:1579–89.

    Article  CAS  Google Scholar 

  19. Shannon RD, Pask JA. Kinetics of the anatase-rutile transformation. J Am Ceram Soc. 1965;48:391–8.

    Article  CAS  Google Scholar 

  20. Gennari FC, Pasquevich DM. Kinetics of the anatase–rutile transformation in TiO2 in the presence of Fe2O3. J Mater Chem. 1998;33:1571–8.

    CAS  Google Scholar 

  21. Arbiol J, Cerda J, Dezanneau G, Cirera A, Peiro F, Cornet A, Morante JR. Effects of Nb doping on the TiO2 anatase-to-rutile phase transition. J Appl Phys. 2002;92:853–61.

    Article  CAS  Google Scholar 

  22. Burns A, Hayes G, Li W, Hirvonen J, Demaree JD, Shah SI. Neodymium ion dopant effects on the phase transformation in sol–gel derived titania nanostructures. Mater Sci Eng B. 2004;111:150–5.

    Article  Google Scholar 

  23. Gallagher PK. Handbook of thermal analysis and calorimetry vol. 5: Recent advances techniques and applications. In: Brown ME, Gallagher PK, editors; 2008.

  24. Navrotsky A. Thermochemistry of nanomaterials. Rev Miner Geochem. 2001;44:73–103.

    Article  CAS  Google Scholar 

  25. Bokhimia X, Pedrazab F. Characterization of brookite and a new corundum-like titania phase synthesized under hydrothermal conditions. J Solid State Chem. 2004;177:2456–63.

    Article  Google Scholar 

  26. Zhang HZ, Banfield JF. Phase transformation of nanocrystalline anatase-to-rutile via combined interface and surface nucleation. J Mater Res. 2000;15:437–48.

    Article  CAS  Google Scholar 

  27. Tanaka K, Iwama S, Mihama K. Crystallization of nanometer–sized amorphous sb particles formed by flowing gas evaporation technique. Jpn J Appl Phys. 1998;37:L669–71.

    Article  CAS  Google Scholar 

  28. Celine Perego, Renaud Revel, Olivier Durupthy, Sophie Cassaignon, Jean-Pierre Jolivet. Thermal stability of TiO2-anatase: impact of nanoparticles morphology on kinetic phase transformation. Solid State Sci. 2010;12:989–95.

  29. Ye X, Sha J, Jiao Z, Zhang L. Thermoanalytical characteristic of nanocrystalline brookite-based titanium dioxide. NanoStruct Mater. 1997;8(7):919–27.

    Article  CAS  Google Scholar 

  30. Madras G, McCoy BJ, Navrotsky A. Kinetic model for TiO2 polymorphic transformation from anatase to rutile. J Am Ceram Soc. 2007;90:250–5.

    Article  CAS  Google Scholar 

  31. Nakayama N, Hayashi T. Preparation of TiO2 nanoparticles surface-modified by both carboxylic acid and amine: Dispersibility and stabilization in organic solvents. Colloids Surf A Physicochem Eng Asp. 2008;317:543–50.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial support of the National Program II—IDEAS no. 50/2007-2010 Grant and National Program II—Partnership ctr 72-184 are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cornelia Marinescu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marinescu, C., Sofronia, A., Rusti, C. et al. DSC investigation of nanocrystalline TiO2 powder. J Therm Anal Calorim 103, 49–57 (2011). https://doi.org/10.1007/s10973-010-1072-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-010-1072-6

Keywords

Navigation