Skip to main content
Log in

Enhanced interfacial adhesion, mechanical, and thermal properties of natural flour-filled biodegradable polymer bio-composites

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This study examined the interfacial adhesion, mechanical, and thermal properties of compatibilizing agent-treated and non-treated biocomposites as a function of the type of compatibilizing agent. The tensile strength, interfacial adhesion, and heat deflection temperature (HDT) of maleic anhydride-grafted poly(butylene succinate) (PBS-MA) and maleic anhydride-grafted poly(lactic acid) (PLA-MA)-treated biocomposites are greater than those of untreated maleic anhydride-grafted poly(styrene-b-ethylene-co-butylene-b-styrene) triblock copolymer (SEBS-MA) and maleic anhydride-grafted polypropylene (MAPP)-treated biocomposites. The storage modulus (E′) values and the tan δmax temperatures (T g) of PBS-MA and PLA-MA-treated biocomposites were slightly higher than that of the untreated biocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Termpittayapaisith A. Thailand’s policies to promote bioplastics. In: Inno bioplastic 2006 “Asia’s First Bioplastic Conference and Exhibition”. 2006. p. 15–16.

  2. Wu C-S. Improving polylactide/starch biocomposites by grafting polylactide with acrylic acid-characterization and biodegradability assessment. Macromol Biosci. 2005;5:352–61.

    Article  CAS  Google Scholar 

  3. Kim H-S, Kim H-J, Lee J-W, Choi I-G. Biodegradability of bio-flour filled biodegradable poly(butylene succinate) bio-composites in natural and compost soil. Polym Degrad Stabil. 2006;91:1117–27.

    Article  CAS  Google Scholar 

  4. Li H, Chang J, Cao A, Wang J. In vitro evaluation of biodegradable polybutylene succinate as a novel biomaterial. Macromol Biosci. 2005;5:433–40.

    Article  CAS  Google Scholar 

  5. Mothe CG, Azevedo AD, Drumond WS, Wang SH. Thermal properties of amphiphilic biodegradable triblock copolymer of L,L-lactide and ethylene glycol. J Therm Anal Calorim. 2010;101:229–33.

    Article  CAS  Google Scholar 

  6. Shanks RA, Hodzic A, Ridderhof D. Composites of poly(lactic acid) with flax fibers modified by interstitial polymerization. J Appl Polym Sci. 2006;99:2305–13.

    Article  CAS  Google Scholar 

  7. Shih YF, Wang TY, Jeng RJ, Wu JY, Teng CC. Biodegradable nanocomposites based on poly(butylene succinate)/organoclay. J Polym Environ. 2007;15:151–8.

    Article  Google Scholar 

  8. Kim H-S, Lee B-H, Choi S-W, Kim S, Kim H-J. The effect of types of maleic anhydride-grafted polypropylene (MAPP) on the interfacial adhesion properties of bio-flour filled polypropylene composites. Compos Part A. 2007;38:1473–82.

    Article  Google Scholar 

  9. Mishra S, Mohanty AK, Drzal LT, Misra M, Hinrichsen G. A review on pineapple leaf fibers, sisal fibers and their biocomposites. Macromol Mater Eng. 2004;289:955–74.

    Article  CAS  Google Scholar 

  10. Han G, Lei Y, Wu Q, Kojima Y, Suzuki S. Bamboo-fiber filled high density polyethylene composites: effect of coupling treatment and nanoclay. J Polym Environ. 2008;16:123–30.

    Article  CAS  Google Scholar 

  11. Zhang SY, Zhang Y, Bousmina M, Sain M, Choi P. Effects of raw fiber materials, fiber content, and coupling agent content on selected properties of polyethylene/wood fiber composites. Polym Eng Sci. 2007;47:1678–87.

    Article  CAS  Google Scholar 

  12. Tserki V, Matzinos P, Zafeiropoulos NE, Panayiotou C. Development of biodegradable composites with treated and compatibilized lignocellulosic fibers. J Appl Polym Sci. 2006;100:4703–10.

    Article  CAS  Google Scholar 

  13. Demir H, Atikler U, Balkose D, Tihminlioglu F. The effect of fiber surface treatments on the tensile and water sorption properties of polypropylene-luffa fiber composites. Compos Part A. 2006;37:447–56.

    Article  Google Scholar 

  14. Kim H-S, Kim S, Kim H-J, Yang H-S. Thermal properties of bio-flour filled polyolefin composites with different compatibilizing agent type and content. Thermochim acta. 2006;451:181–8.

    Article  CAS  Google Scholar 

  15. Wu C-S. Physical properties and biodegradability of maleated polycaprolactone starch composite. Polym Degrad Stabil. 2003;80:127–34.

    Article  Google Scholar 

  16. Gaylod NG, Mehta R, Kumar V, Tazi M. High density polyethylene-g-maleic anhydride preparation in presence of electron donors. J Appl Polym Sci. 1989;38:359–71.

    Article  Google Scholar 

  17. Tserki V, Matzinos P, Panayiotou C. Novel biodegradable composites based on treated lignocellulosic waste flour as filler Part II. Development of biodegradable composites using treated and compatibilized waste flour. Compos Part A. 2006;37:1231–8.

    Article  Google Scholar 

  18. Kim H-S, Yang H-S, Kim H-J. Biodegradability and mechanical properties of agro-flour filled polybutylene succinate biocomposites. J Appl Polym Sci. 2005;97:1513–21.

    Article  CAS  Google Scholar 

  19. Chen B, Sun K. Poly (ε-caprolactone)/hydroxyapatite composites: effects of particle size, molecular weight distribution and irradiation on interfacial interaction and properties. Polym Test. 2005;24:64–70.

    Article  CAS  Google Scholar 

  20. Wang Y, Yeh F-C, Lai SM, Chan H-C, Shen H-F. Effectiveness of functionalized polyolefins as compatibilizers for polyethylene/wood flour composites. Polym Eng Sci. 2003;43:933–45.

    Article  CAS  Google Scholar 

  21. Hristov V, Vasileva S. Dynamic mechanical and thermal properties of modified polypolypropylene wood fiber composites. Macromol Mater Eng. 2003;288:798–806.

    Article  CAS  Google Scholar 

  22. Kim H-S, Kim H-J, Cho D. Thermal analysis of hydrolysis and degradation of biodegradable polymer and bio-composites. J Therm Anal Calorim. 2009;96:211–8.

    Article  CAS  Google Scholar 

  23. Mohanty S, Verma SK, Nayak SK. Dynamic mechanical and thermal properties of MAPE treated jute/HDPE composites. Compos Sci Technol. 2005;3–4:538–47.

    Google Scholar 

  24. Wong ACY. Heat deflection characteristics of polypropylene and polypropylene/polyethylene binary systems. Compos Part B. 2003;34:199–208.

    Article  Google Scholar 

  25. Liu W, Drzal LT, Mohanty AK, Misra M. Influence of processing methods and fiber length on physical properties of kenaf fiber reinforced soy based biocomposites. Compos Part B. 2007;38:352–9.

    Article  CAS  Google Scholar 

  26. Singh S, Mohanty AK. Wood fiber reinforced bacterial bioplastic composites: fabrication and performance evaluation. Compos Sci Technol. 2007;67:1753–63.

    Article  CAS  Google Scholar 

  27. Huda MS, Drzal LT, Mohanty AK, Misra M. The effect of silane treated and untreated talc on the mechanical and physico-mechanical properties of polylactic acid/newspaper fibers/talc hybrid composites. Compos Part B. 2007;38:367–79.

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported financially by the Cleaner Production R&D Program and Colorado Center for Biorefining and Biofuels (C2B2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyun-Joong Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, HS., Lee, BH., Lee, S. et al. Enhanced interfacial adhesion, mechanical, and thermal properties of natural flour-filled biodegradable polymer bio-composites. J Therm Anal Calorim 104, 331–338 (2011). https://doi.org/10.1007/s10973-010-1098-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-010-1098-9

Keywords

Navigation