Skip to main content
Log in

DSC study of the kinetic parameters of the metastable phases formation during non-isothermal annealing of an Al–Si–Mg alloy

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Kinetics of β″ and β′ precipitations in an AlSiMg have been studied under non-isothermal conditions using differential scanning calorimetry (DSC) technique. The variation of the activation energy as a function of transformed fraction is determined using two isoconversional methods of Kissinger–Akahira–Sunose (KAS) and Friedman. The results obtained using the two methods show a change in the activation energy for both metastable phases precipitations as a function of transformed fraction. The results obtained from KAS method as compared with those obtained from Friedman method, show some major disagreements between the two methods. The growth exponent, determined by Ozawa method, decreases as a function of temperature for both phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kempen ATW, Sommer F, Mittemeijer EJ. Determination and interpretation of isothermal and non-isothermal transformation kinetics; the effective activation energies in terms of nucleation and growth. J Mater Sci. 2002;37:1321–32.

    Article  CAS  Google Scholar 

  2. Brown ME, Dollimore D, Galwey AK. Comprehensive chemical kinetics. In: Bamford H, Tipper CFH, editors. Reaction in the solid state, vol. 22. Amsterdam: Elsevier; 1980. p. 41–113.

    Chapter  Google Scholar 

  3. Šesták J. Thermophysical properties of solids, their measurements and theoretical thermal analysis. Amsterdam: Elsevier; 1984.

    Google Scholar 

  4. Galwey AK, Brown ME. Thermal decomposition of ionic solids. Amsterdam: Elsevier; 1999.

    Google Scholar 

  5. Friedman HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J Polym Sci C. 1964;6:183–95.

    Google Scholar 

  6. Coats AW, Redfern JP. Kinetic parameters from thermogravimetric data. Nature. 1964;201:68–9.

    Article  CAS  Google Scholar 

  7. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

  8. Akahira T, Sunose T. Trans. Joint Convention of Four Electrical Institutes, Paper No. 246, 1969 Research report. Chiba Institute of Technology. Sci Technol. 1971;16:22–31.

    Google Scholar 

  9. Mittemeijer EJ. Analysis of the kinetics of phase transformations. J Mater Sci. 1992;27:3977–87.

    Article  CAS  Google Scholar 

  10. Vyazovkin S. Modification of the integral isoconversional method to account for variation in the activation energy. J Comput Chem. 2001;22:178–83.

    Article  CAS  Google Scholar 

  11. Cai J, Chen S. A new iterative linear integral isoconversional method for the determination of the activation energy varying with the conversion degree. J Comput Chem. 2009;30:1986–91.

    Article  CAS  Google Scholar 

  12. Ortega A. A simple and precise linear integral method for isoconversional data. Thermochim Acta. 2008;474:81–6.

    Article  CAS  Google Scholar 

  13. Wahi RP, von Heimendahl M. On the occurence oft he metastable phase β″ in Al–Si–Mg alloy. Phys Stat Sol A. 1974;24:607–12.

    Article  CAS  Google Scholar 

  14. Burger GB, Gupta AK, Jeffrey PW, Lloyd DJ. Microstructural control of aluminum sheet used on automotive application. Mater Charact. 1995;35:23–39.

    Article  CAS  Google Scholar 

  15. Andersen SJ, Zandbergen HW, Jansen J, Træholt C, Tundal U, Reiso O. The crystal structure of the β″ phase in Al–Mg–Si alloys. Acta Mater. 1998;46:3283.

    Article  CAS  Google Scholar 

  16. Miao WF, Laughlin DE. Precipitation hardening in aluminum alloy 6022. Scripta Mater. 1999;40:873–8.

    Article  CAS  Google Scholar 

  17. Dutta I, Allen SM. A calorimetric study of precipitation in commercial aluminium alloy 6061. J Mater Sci Lett. 1991;10:323–6.

    Article  CAS  Google Scholar 

  18. Gupta AK, Lloyd DJ, Court SA. Precipitation hardening in Al–Mg–Si alloys with and without excess Si. Mater Sci Eng A. 2001;316:11–7.

    Article  Google Scholar 

  19. Wang X, Esmaeili S, Lloyd DJ. The sequence of precipitation in the Al–Mg–Si–Cu alloy AA6111. Metall Mater Trans A. 2006;37A:2691–9.

    Article  CAS  Google Scholar 

  20. Jacobs MH. The structure of the metastable precipitates formed during ageing of an Al–Mg–SI alloy. Philos Mag. 1972;26:1–13.

    Article  CAS  Google Scholar 

  21. Edwards GA, Stiller K, Dunlop GL, Couper MJ. The precipitation sequence in Al–Mg–Si alloys. Acta Mater. 1998;46:3893–904.

    Article  CAS  Google Scholar 

  22. Matsuda K, Naoi T, Fujii K, Uetani Y, Sato T, Kamio A, Ikeno S. Crystal structure of the β″ phase in an Al-1.0mass%Mg2Si-0.4mass%Si alloy. Mater Sci Eng A. 1999;262:232–7.

    Article  Google Scholar 

  23. Polli H, Pontes LAM, Araujo AS, Barros Joana MF, Fernandes VJ Jr. Degradation behavior and kinetic study of ABS polymer. J Therm Anal Calorim. 2009;95:131–4.

    Article  CAS  Google Scholar 

  24. Chrissafis K. Kinetics of thermal degradation of polymers. Complementary use of isoconversional and model-fitting methods. J Therm Anal Calorim. 2009;95:273–83.

    Article  CAS  Google Scholar 

  25. Kumari K, Raina KK, Kundu PP. DSC studies on the curing of chitosan-alanine using glutaraldehyde as crosslinker. J Therm Anal Calorim. 2009;98:469–76.

    Article  CAS  Google Scholar 

  26. Pǎcurariu C, Lazǎu RI, Lazǎu I, Ianos R, Tita B. Non-isothermal crystallization kinetics of some basaltic glass-ceramics containing CaF2 as nucleation agent. J Therm Anal Calorim. 2009;97:507–13.

    Article  Google Scholar 

  27. Araújo EB, Idalgo E. Studies on crystallization kinetics of tellurite 20Li2O–80TeO2 glass. J Therm Anal Calorim. 2009;95:37–42.

    Article  Google Scholar 

  28. Rotaru A, Moantǎ A, Rotaru P, Segal E. Thermal decomposition kinetics of some aromatic azomonoethers. Part III. Non-isothermal study of 4-[(4-chlorobenzyl)oxy]-4′-chloroazobenzene in dynamic air atmosphere. J Therm Anal Calorim. 2009;95:161–6.

    Article  CAS  Google Scholar 

  29. López M, Blanco M, Vazquez A, Ramos JA, Arbelaiz A, Gabilondo N, Echeverría JM, Mondragon I. Isoconversional kinetic analysis of resol-clay nanocomposites. J Therm Anal Calorim. 2009;96:567–73.

    Article  Google Scholar 

  30. Boonchom B, Danvirutai C, Thongkam M. Non-isothermal decomposition kinetics of synthetic serrabrancaite (MnPO4·H2O) precursor in N2 atmosphere. J Therm Anal Calorim. 2010;99:357–62.

    Article  CAS  Google Scholar 

  31. Tsao CS, Chen CY, Jeng US, Kuo TY. Precipitation kinetics and transformation of metastable phases in Al–Mg–Si alloys. Acta Mater. 2006;54:4621–31.

    Article  CAS  Google Scholar 

  32. Moreau G, Cornet JA, Calais D. Accélération de la diffusion chimique sous irradiation dans le système Al-Mg. J Nucl Mater. 1971;38:197–202.

    Article  CAS  Google Scholar 

  33. Berger D, Cyrener E. Diffusion of foreign elements in aluminum mixed crystals III. Microprobe study of silicon diffusion in aluminum. Neue Huette. 1973;18:356–61.

    Google Scholar 

  34. Fujikawa SI, Hirano K, Fukushima Y. Diffusion of silicon in aluminium. Metall Mater Trans A. 1978;9:1811–5.

    Article  Google Scholar 

  35. Hirano KI. Diffusion in aluminum. J Jpn Inst Light Met. 1979;29:249–62.

    CAS  Google Scholar 

  36. Nishizawa T. Thermodynamics of microstructures. ASM Int. 2008.

  37. Su T, Jiange H, Gong H. Thermal decomposition and dehydration kinetic studies on hydrated Co(II) methanesulfonate. Thermochim Acta. 2005;435:1–5.

    Article  CAS  Google Scholar 

  38. Joraid AA. Estimating the activation energy for the non-isothermal crystallization of an amorphous Sb9.1Te20.1Se70.8 alloy. Thermochim Acta. 2007;456:1–6.

    Article  CAS  Google Scholar 

  39. Starink MJ. The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochim Acta. 2003;404:163–76.

    Article  CAS  Google Scholar 

  40. Marioara CD, Andersen SJ, Jansen J, Zandbergen HW. Atomic model for GP-zones in a 6082 Al–Mg–Si System. Acta Mater. 2001;49:321–8.

    Article  CAS  Google Scholar 

  41. Murayama M, Hono K. Pre-precipitation clusters and precipitation processes in Al–Mg–Si alloys. Acta Mater. 1999;47:1537–48.

    Article  CAS  Google Scholar 

  42. Ravi C, Wolverton C. First-principles study of crystal structure and stability of Al–Mg–Si–(Cu) precipitates. Acta Mater. 2004;52:4213–27.

    Article  CAS  Google Scholar 

  43. De Gueser F. Interprétation et traitement des données de sonde atomique tomographique: application à la precipitation dans les Al-Mg-Si. Thesis, Rouen University U.F.R. de Sciences et Techniques, France; 2005.

  44. van Huis MA, Chen JH, Zandbergen HW, Sluiter MHF. Phase stability and structural relations of nanometer-sized, matrix-embedded precipitate phase in Al–Mg–Si alloys in the late stage of evolution. Acta Mater. 2006;54:2945–55.

    Article  Google Scholar 

  45. Starink MJ, Zahra AM. β′ and β precipitation in an Al–Mg alloy studied by DSC and TEM. Acta Mater. 1998;46:3381–97.

    Article  CAS  Google Scholar 

  46. Ozawa T. Kinetics of non-isothermal crystallization. Polymer. 1971;12:150–8.

    Article  CAS  Google Scholar 

  47. Liu F, Sommer F, Mittemeijer EJ. Analysis of the kinetics of phase transformations; roles of nucleation index and temperature dependent site saturation, and recipes for the extraction of kinetic parameters. J Mater Sci. 2007;42:573–87.

    Article  CAS  Google Scholar 

  48. Christian JW. The theory of transformation in metals and alloys, 2nd edn. Part I, chapt. 12. Oxford: Pergamon Press; 1975.

    Google Scholar 

  49. Weatherly GC, Nicholson RB. An electron microscope investigation of the interfacial structure of semi-coherent precipitates. Philos Mag. 1968;17:801–31.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mourad Ibrahim Daoudi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Daoudi, M.I., Triki, A. & Redjaimia, A. DSC study of the kinetic parameters of the metastable phases formation during non-isothermal annealing of an Al–Si–Mg alloy. J Therm Anal Calorim 104, 627–633 (2011). https://doi.org/10.1007/s10973-010-1099-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-010-1099-8

Keywords

Navigation