Skip to main content
Log in

Few introducing comments on the thermal analysis of organoclays

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Organoclays are the adsorption products of organic matter by clay minerals. In modern technology, organoclay-based nanocomposites obtained by modifying Na-clay by primary adsorption of organic ammonium cations or long-chain cationic surfactants are widely used in different industries. They are potential candidates for serving as sorbents of different organic compounds by secondary adsorption. Organoclays are widely spread in the environment and are responsible for the colloid behavior of different environmental elements such as soils. This manuscript summarizes some of the basic knowledge on thermal analysis of organoclays and reviews some of the recent studies carried out in our laboratory on organoclays which occur in the environment, those applied in industry and of those obtained by secondary adsorption processes. Complexes in the environment or those used in industry are mainly of the smectite clay mineral montmorillonite and their thermal analysis in air is treated here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yariv S, Michaelian KH. Structure and surface acidity of clay minerals. In: Yariv S, Cross H, editors. Organo-clay complexes and interactions. New York: Marcel Dekker; 2002. p. 1–38.

    Google Scholar 

  2. Yariv S. Wettability of clay minerals. In: Schrader ME, Loeb G, editors. Modern approach to wettability. New York: Plenum Press; 1992. p. 279–326.

    Google Scholar 

  3. Yariv S. Introduction to organo-clay complexes and interactions. In: Yariv S, Cross H, editors. Organo-clay complexes and interactions. New York: Marcel Dekker; 2002. p. 39–111.

    Google Scholar 

  4. Yariv S. Staining of clay minerals and visible absorption spectroscopy of dye–clay complexes. In: Yariv S, Cross H, editors. Organo-clay complexes and interactions. New York: Marcel Dekker; 2002. p. 463–566.

    Google Scholar 

  5. Chun Y, Sheng GY, Boyd SA. Sorptive characteristics of tetraalkylammonium-exchanged smectite clays. Clay Clay Miner. 2003;51:451–8.

    Google Scholar 

  6. Boyd SA, Chiou CT, Mortland MM. Sorption characteristics of organic compounds on hexadecyltrimethylammoniumsmectite. Soil Sci Soc Am J. 1988;52:652–60.

    Article  CAS  Google Scholar 

  7. Boyd SA, Jaynes WF, Ross BS. Immobilization of organic contaminants by organo-clays. Application to soil restoration and hazardous waste containment. In: Baker RS, editor. Organic substances and sediments in water. Chelsea: Lewis Publishers; 1991. p. 181–200.

    Google Scholar 

  8. Giese RF, van Oss CJ. Organophilicity and hydrophobicity of organoclays. In: Yariv S, Cross H, editors. Organo-clay complexes and interactions. New York: Marcel Dekker; 2002. p. 175–91.

    Google Scholar 

  9. Mortland MM, Shaobai S, Boyd SA. Clay-organic complexes as adsorbents for phenol and chlorophenol. Clays Clay Miner. 1986;34:581–5.

    Article  CAS  Google Scholar 

  10. Sheng GY, Shihe Xu, Boyd SA. Mechanisms controlling sorption of neutral organic contaminants by surfactant-derived and natural organic matter. Environ Sci Technol. 1996;30:1553–60.

    Article  CAS  Google Scholar 

  11. Sheng GY, Shihe Xu, Boyd SA. Surface heterogeneity of trimethylphenylammonium-smectite as revealed by adsorption of aromatic hydrocarbons from water. Clays Clay Miner. 1997;45:659–68.

    Article  CAS  Google Scholar 

  12. Sheng GY, Boyd SA. Polarity effect on dichlorobenzene sorption by hexadecyltrimethylammonium exchanged clays. Clays Clay Miner. 2000;48:43–50.

    Article  CAS  Google Scholar 

  13. Hermosin MC, Cornejo J. Binding mechanism of 2,4-dichlorophenoxyacetic acid by organo-clays. J Environ Qual. 1993;22:325–32.

    Article  CAS  Google Scholar 

  14. Hermosin MC, Crabb A, Cornejo J. Sorption capacity of organo-clays for anionic and polar organic contaminants. Fresenius Environ Bull. 1995;4:514–21.

    CAS  Google Scholar 

  15. He H, Ding Z, Zhu J, Yuan P, Xi Y, Yang D, Frost RL. Thermal characterization of surfactant-modified montmorillonite. Clays Clay Miner. 2005;53:287–93.

    Article  CAS  Google Scholar 

  16. Xi Y, Frost RL, He H. Modification of the surfaces of Wyoming montmorillonite by the cationic surfactants alkyl trimethyl, dialkyl dimethyl, and trialkylmethyl ammonium bromides, J. Colloids Interface Sci. 2007;305:150–8.

    Article  CAS  Google Scholar 

  17. Yariv S. Organophilic pores as proposed primary migration media for hydrocarbons in argillaceous rocks. Clay Sci. 1976;5:19–29.

    CAS  Google Scholar 

  18. Jordan JW. Organophilic bentonites I. Swelling in organic liquids. J Phys Colloid Chem. 1949;53:294–306.

    Article  CAS  Google Scholar 

  19. Jordan JW. Alteration of the properties of bentonite by reactions with amines. Mineral Mag. 1949;28:598–605.

    Article  CAS  Google Scholar 

  20. Barrer RM. Shape selective sorbents based on clay minerals—a review. Clays Clay Miner. 1989;37:385–95.

    Article  CAS  Google Scholar 

  21. Langier-Kuzniarowa A. Thermal analysis of organo-clay complexes. In: Yariv S, Cross H, editors. Organo-clay complexes and interactions. New York: Marcel Dekker; 2002. p. 273–344.

    Google Scholar 

  22. Paulik F. Special trends in thermal analysis. Chichester: Willey; 1995.

    Google Scholar 

  23. Yariv S. Differential thermal analysis (DTA) of organo-clay complexes. In: Smykatz-Kloss W, SStJ Warne, editors. Lecture notes in earth sciences 38. Thermal analysis in the geosciences. Berlin: Springer; 1991. p. 328–51.

    Google Scholar 

  24. Yariv S. Differential thermal ananlysis (DTA) in the study of thermal reactions of organo-clay complexes. In: Ikan R, editor. Natural and laboratory simulated thermal geochemical processes. Dordrecht: Kluver Academic Publishers; 2003. p. 253–96.

    Google Scholar 

  25. Yariv S, Ovadyahu D, Nasser A, Shuali U, Lahav N. Thermal analysis study of heat of dehydration of tributyl-ammonium smectites. Thermochim Acta. 1992;207:103–13.

    Article  CAS  Google Scholar 

  26. Yariv S. Combined DTA-mass spectroscopy of organo-clay complexes. J Therm Anal. 1990;36:1953–61.

    Article  CAS  Google Scholar 

  27. Yariv S. IR spectroscopy and thermo-IR spectroscopy in the study of organo-clay complexes. In: Yariv S, Cross H, editors. Organo-clay complexes and interactions. New York: Marcel Dekker; 2002. p. 345–462.

    Google Scholar 

  28. Yariv S, Lapides I. The use of thermo-XRD-analysis in the study of organo-smectite complexes. J Therm Anal Calorim. 2005;80:11–26.

    Article  CAS  Google Scholar 

  29. Cebulak S, Langier-Kuzniarowa A. Some remarks on methodology of thermal analysis of clay minerals. J Therm Anal Calorim. 1998;53:375–81.

    Article  CAS  Google Scholar 

  30. Yariv S. The effect of tetrahedral substitution of Si by Al on the surface acidity of the oxygen plane of clay minerals. Intern Rev Phys Chem. 1992;11:345–75.

    Article  CAS  Google Scholar 

  31. Ovadyahu D, Lapides I, Yariv S. Thermal analysis of tributylammonium montmorillonite and Laponite. J Therm Anal Calorim. 2007;87:125–34.

    Article  CAS  Google Scholar 

  32. Ovadyahu D, Yariv S, Lapides I. Mechanochemical adsorption of phenol by TOT swelling clay minerals: I. Thermo-IR-spectroscopy and X-ray study. J Therm Anal Calorim. 1998;51:415–30.

    CAS  Google Scholar 

  33. Yariv S. Study of the adsorption of organic molecules on clay minerals by differential thermal analysis. Thermochim Acta. 1985;88:49–68.

    Article  CAS  Google Scholar 

  34. Shuali U, Steinberg M, Yariv S, Mueller Vonmoos M, Kahr G, Rub A. Thermal analysis of sepiolite and palygorskite treated with butylamine. Clay Miner. 1990;25:107–19.

    Article  CAS  Google Scholar 

  35. Chi Chou C, McAtee JL. Thermal decomposition of organo-ammonium compounds exchanged onto montmorillonite and hectorite. Clays Clay Miner. 1969;17:339–46.

    Article  Google Scholar 

  36. Mackenzie RC. Simple phyllosilicates based on gibbsite- and brucite-like sheets. In: Mackenzie RC, editor. Differential thermal analysis. London: Academic Press; 1970. p. 497–537.

    Google Scholar 

  37. Bodenheimer W, Heller L, Yariv S. Organo-metallic clay complexes: VII. Thermal analysis of montmorillonite-diamine and glycol complexes. Clay Miner. 1966;6:167–77.

    Article  CAS  Google Scholar 

  38. Yariv S, Mueller-Vonmoos M, Kahr G, Rub A. Thermal analytical study of the adsorption of crystal violet by montmorillonite. Thermochim Acta. 1989;148:457–66.

    Article  Google Scholar 

  39. Allaway WH. Differential thermal analysis of clays treated with organic cations as an aid in the study of soil colloids. Soil Sci Am Proc. 1949;13:183–8.

    Article  CAS  Google Scholar 

  40. Bradley WF, Grim RE. Colloid properties of layer silicates. J Phys Chem. 1948;52:1404–13.

    Article  CAS  Google Scholar 

  41. Yariv S. The role of charcoal on DTA curves of organo-clay complexes. An overview. Appl Clay Sci. 2004;24:225–36.

    Article  CAS  Google Scholar 

  42. Yermiyahu Z, Lapides I, Yariv S. Visible absorption spectroscopy study of the adsorption of Congo-red by montmorillonite. Clay Miner. 2003;38:483–500.

    Article  CAS  Google Scholar 

  43. Yermiyahu Z, Landau A, Zaban A, Lapides I, Yariv S. Monoionic montmorillonites treated with Congo-red Differential thermal analysis study. J Therm Anal Calorim. 2003;72:431–41.

    Article  CAS  Google Scholar 

  44. Yariv S, Kahr G, Rub A. Thermal analysis of the adsorption of rhodamine 6G by smectite minerals. Thermochim Acta. 1988;135:299–306.

    Article  CAS  Google Scholar 

  45. Landau A, Zaban A, Lapides I, Yariv S. Montmorillonite treated with rhodamine-6G mechanochemically and in aqueous suspensions-simultaneous DTA–TG study. J Therm Anal Calorim. 2002;70:103–13.

    Article  CAS  Google Scholar 

  46. Lapides I, Yariv S, Golodnitsky D. Simultaneous DTA–TG study of montmorillonite mechanochemically treated with crystal-violet. J Therm Anal Calorim. 2002;67:99–112.

    Article  CAS  Google Scholar 

  47. Borisover M, Bukhanovsky N, Lapides S, Yariv S. Thermal treatment of organoclays: effect on the aqueous sorption of nitrobenzene on n-hexadecyltrimethyl ammonium montmorillonite. Appl Surf Sci. 2010;256:5539–44.

    Article  CAS  Google Scholar 

  48. Burstein F, Borisover M, Lapides S, Yariv S. Secondary adsorption on nitrobenzene and m-nitrophenol by hexadecyltrimethylammonium-montmorillonite: thermo-XRD-analysis. J Therm Anal Calorim. 2008;92:35–42.

    Article  CAS  Google Scholar 

  49. Abramova E, Lapides I, Yariv S. Thermo-XRD investigation of monoionic montmorillonites mechanochemically treated with urea. J Therm Anal Calorim. 2007;90:97–106.

    Article  Google Scholar 

  50. Yermiyahu Z, Lapides I, Yariv S. Thermo-infrared-spectroscopy analysis of the interaction of naphthylammonium-montmorillonite with sodium nitrite. Colloid Polym Sci. 2008;286:1233–42.

    Article  CAS  Google Scholar 

  51. Yermiyahu Z, Lapides I, Yariv S. Synthesis and thermo-XRD-analysis of the organo-clay color pigment Naphthylazonaphthylammonium-montmorillonite. J Therm Anal Calorim. 2007;88:795–800.

    Article  CAS  Google Scholar 

  52. Yermiyahu Z, Kogan A, Lapides I, Pelly I, Yariv S. Thermal study of naphthylammonium- and naphthylazonaphthylammonium montmorillonite, XRD and DTA. J Therm Anal Calorim. 2008;91:125–35.

    Article  CAS  Google Scholar 

  53. Siebner-Freibach H, Hadar Y, Yariv S, Lapides I, Chen Y. Thermospectroscopic study of the adsorption mechanism of the hydroxamic siderophore ferrioxamine B by calcium montmorillonite. J Agric Food Chem. 2006;54:1399–408.

    Article  CAS  Google Scholar 

  54. Cohen E, Joseph T, Lapides I, Yariv S. The adsorption of berberine by montmorillonite and thermo-XRD analysis of the organo-clay complex. Clay Miner. 2005;40:223–32.

    Article  CAS  Google Scholar 

  55. Yermiyahu Z, Lapides I, Yariv S. Thermo-XRD-analysis of montmorillonite treated with protonated Congo-red. Curve fitting. Appl Clay Sci. 2005;30:33–41.

    Article  CAS  Google Scholar 

  56. Yermiyahu Z, Lapides I, Yariv S. Thermo-visible-absorption-spectroscopy study of the protonated Congo-red montmorillonite complex. Appl Clay Sci. 2007;37:1–11.

    Article  CAS  Google Scholar 

  57. Ni R, Huang Y, Yao C. Thermogravimetric analysis of organoclays intercalated with the Gemini surfactants. J Therm Anal Calorim. 2009;96:943–7.

    Article  CAS  Google Scholar 

  58. Lu L, Cai J, Frost RL. Desorption of stearic acid upon surfactant adsorbed montmorillonite. J Therm Anal Calorim. 2010;100:141–4.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by a grant from the Israeli Science Foundation (No. 919.08) and by a grant from the Ministry of Science, Culture and Sport and the Ministry of Research (Infrastructure 3-4136).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shmuel Yariv.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yariv, S., Borisover, M. & Lapides, I. Few introducing comments on the thermal analysis of organoclays. J Therm Anal Calorim 105, 897–906 (2011). https://doi.org/10.1007/s10973-010-1221-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-010-1221-y

Keywords

Navigation