Skip to main content
Log in

Estimation of cracking risk of concrete at early age based on thermal stress analysis

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The purpose of this study is to simulate the early age concrete behaviors and evaluate the cracking risk with the thermal and thermal stress analysis. A new finite element method program associated with ANSYS program is developed for the computation of thermal field and thermal stress field for early age concrete considering the following characters: degree of hydration, thermal properties (such as specific heat, thermal diffusivity), thermal boundary conditions, and mechanical properties (such as shrinkage, creep) which occur at early age. The results from simulation compared with experimental values found in the literature show a good agreement. Finally, based on this user-developed subroutine, the effects of hydration heat, ambient temperature, wind velocity, shrinkage, and length-height ratio on cracking risk were analyzed for a concrete wall which is one part of the structure of Maridal culvert in Norway. By which, the measures to control the cracking were provided for the engineering application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Kjellman O, Olofsson J. 3D structural analysis of crack risk in hardening concrete structures. Verification of a three-step engineering method; 1999. Contract No.: TG 4/N2.

  2. Nocun-Wczelik W, Stok A, Konik Z. Heat evolution in hydrating expansive cement systems. J Therm Anal Calorim. 2010;101:527–32.

    Article  CAS  Google Scholar 

  3. Du C, Liu G. Numerical procedure for thermal creep stress in mass concrete structures. Commun Numer Eng. 1994;10(7):545–54.

    Article  Google Scholar 

  4. Bazant ZP. Prediction of concrete creep and shrinkage: past, present and future. Nucl Eng Des. 2001;203(1):27–38.

    Article  CAS  Google Scholar 

  5. Altoubat SA, Lange DA. Creep, shrinkage, and cracking of restrained concrete at early age. ACI Mater J. 2001;98(4):323–31.

    CAS  Google Scholar 

  6. De Schutter G. Finite element simulation of thermal cracking in massive hardening concrete elements using degree of hydration based material laws. Comput Struct. 2002;80:2035–42.

    Article  Google Scholar 

  7. Yuan Y, Wan ZL. Prediction of cracking within early-age concrete due to thermal, drying and creep behavior. Cem Concr Res. 2002;32(7):1053–9.

    Article  CAS  Google Scholar 

  8. Wu Y, Luna R. Numerical implementation of temperature and creep in mass concrete. Finite Elem Anal Des. 2001;37(2):97–106.

    Article  Google Scholar 

  9. Amin MN, Kim J-S, Lee Y, Kim J-K. Simulation of the thermal stress in mass concrete using a thermal stress measuring device. Cem Concr Res. 2009;39(3):154–64.

    Article  CAS  Google Scholar 

  10. ACI209R-92. Prediction of creep, shrinkage, and temperature effects in concrete structures: American Concrete Institute; 1992.

  11. van Breugel K, Koenders EAB. Effect on solar radiation on the risk of cracking in young concrete, Delft University of Technology; 2001. Report No.: BE96-3843.

  12. Borst RD, Boogaard AH. Finite-element modeling of deformation and cracking in early-age concrete. J Eng Mech. 1994;120(12):2519–34.

    Article  Google Scholar 

  13. Vartiainen E. New approach to estimating the diffuse irradiance on inclined surfaces. Renew Energy. 2000;20(1):45–64.

    Article  CAS  Google Scholar 

  14. Chwieduk DA. Recommendation on modelling of solar energy incident on a building envelope. Renew Energy. 2009;34(3):736–41.

    Article  CAS  Google Scholar 

  15. van Breugel K. Simulation of hydration and formation of structure in hardening cement-based materials. Delft: Delft University of Technology, Doctoral thesis; 1991.

  16. Schindler AK, Folliard KJ, editors. Influence of supplementary cementing materials on the heat of hydration of concrete. Advances in Cement and Conrete IX Conference; 2003; Copper Mountain Conference Resort in Colorado.

  17. Goni S, Puertas F, Hernandez MS, Palacios M, Guerrero A, Dolado JS, et al. Quantitative study of hydration of C3S and C2S by thermal analysis. J Therm Anal Calorim. 2010;102:965–73.

    Article  CAS  Google Scholar 

  18. Carino NJ, Lew HS, editors. The maturity method: from theory to application. In: Proceedings of the 2001 structures congress & exposition; 2001 May 21–23; Washington, DC: American Society of Civil Engineers.

  19. Gruyaert E, Robeyst N, Belie ND. Study of the hydration of Portland cement blended with blast-furnace slag by calorimetry and thermogravimetry. J Therm Anal Calorim. 2010;102:941–51.

    Article  CAS  Google Scholar 

  20. Dimon P. Material stability predictions applying a new non-arrhenian temperature function. J Therm Anal Calorim. 2009;97:391–6.

    Article  Google Scholar 

  21. Knudsen T, editor. Modeling hydration of Portland cement—the effects of particle size distribution. In: Proceedings of the engineering foundation conference on characterization and performance prediction of cement and concrete; 1982 July; Henniker, NH: United Engineering Trustees Inc.

  22. Kjellsen KO, Detwiler RJ. Later-age strength prediction by a modified maturity model. ACI Mater J. 1993;90(3):220–7.

    CAS  Google Scholar 

  23. McCullough BF, Ransmussen RO. Fast track paving: concrete temperature control and traffic opening criteria for bonded concrete overlays; 1998. U.S.: FHWA1998 Contract No.: Final Report.

  24. Ulm F-J, Coussy O. Modeling of thermochemomechanical couplings of concrete at early ages. J Eng Mech. 1995;121(7):785–94.

    Article  Google Scholar 

  25. Nakamura H, Hamada S, Tanimoto T, Miyamoto A. Estimation of thermal crack resistance for mass concrete structures with uncertain material properties. ACI Struct J. 1999;96(4):509–18.

    Google Scholar 

  26. Emanuel JH, Hulsey JL. Prediction of the thermal coefficient of expansion of concrete. J ACI. 1977;74(4):149–55.

    CAS  Google Scholar 

  27. Sellevold EJ, Bjntegaard Ø. Coefficient of thermal expansion of cement paste and concrete: mechanisms of moisture interaction. Mater Struct. 2006;39:809–15.

    Article  CAS  Google Scholar 

  28. Larson M. Thermal crack estimation in early age concrete-models and methods for practical application. Lulea University of Technology, Doctoral thesis; 2003.

  29. Bilbao J, de Miguel AH, Kambezidis HD. Air temperature model evaluation in the north mediterranean belt area. J Appl Meteorol. 2002;41(8):872–84.

    Article  Google Scholar 

  30. Spencer JW. Fourier series representation of the position of the sun. Search. 1971;2(5):172.

    Google Scholar 

  31. Rigollier C, Bauer O, Wald L. On the clear sky model of the ESRA—European Solar Radiation Atlas—with respect to the heliosat method. Sol Energy. 2000;68(1):33–48.

    Article  Google Scholar 

  32. Threlkeld JL. Thermal environmental engineering. New Jersey: Prentice-Hall Inc.; 1970.

    Google Scholar 

  33. Kaska O, Yumrutas R, Arpa O. Theoretical and experimental investigation of total equivalent temperature difference (TETD) values for building walls and flat roofs in turkey. Appl Energy. 2009;86(5):737–47.

    Article  Google Scholar 

  34. Kanstad T, Hammer TA, Bjntegaard Ø, Sellevold EJ. Mechanical properties of young concrete: part ii: determination of model parameters and test program proposals. Mater Struct. 2003;36(258):226–30.

    Article  CAS  Google Scholar 

  35. CEB-FIP model 1990, CEB bulletin No. 203. Lausanne, Switzerland; 1991.

  36. Holt E, Leivo M. Cracking risks associated with early age shrinkage. Cem Concr Compos. 2004;26(5):521–30.

    Article  CAS  Google Scholar 

  37. Lura P, Winnefeld F, Klemm S. Simultaneous measurements of heat of hydration and chemical shrinkage on hardening cement pastes. J Therm Anal Calorim. 2010;101(3):925–32.

    Article  CAS  Google Scholar 

  38. Zhu BF. Some problems in the theory of creep in concrete. J Hydraul Eng. 1982;3:35–40.

    Google Scholar 

  39. Zhu BF. An implicit method for the stress analysis of concrete structures considering the effect of creep. J Hydraul Eng. 1983;5:40–6.

    Google Scholar 

  40. Bazant ZP, Wittmann FH. Creep and shrinkage in concrete structures. Chichester, New York, Brisbane, Toronto, Singapore: Wiley; 1982.

    Google Scholar 

  41. Bernander S. Practical measure to avoiding early age thermal cracking in concrete structures. RILEM; 1997. Report No.: TC 119-TCE.

  42. Heimdal E, Kanstad T, Kompen R. Maridal cuvert Norway-field tests I: division of Structural Engineering. Lulea University of Technology; 2001. Report No.: BE96-3843.

  43. Heimdal E, Kanstad T, Kompen R. Maridal cuvert Norway-field tests II: division of Structural Engineering. Lulea University of Technology; 2001. Report No.: BE96-3843.

  44. Lee Y, Kim J-K. Numerical analysis of the early age behavior of concrete structures with a hydration based microplane model. Comput Struct. 2009;87:1085–101.

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the National Natural Science Foundation of China (NSFC) under Grant No. 50779017. The authors also want to appreciate the scholarship awarded to the Donghui Huang by the China Scholarship Council during his 1-year study in City College of City University of New York. Dr. Xiaochun Li and Dr. Hongmei Gao are very appreciated for their contribution to this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haitao Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, S., Huang, D., Lin, FB. et al. Estimation of cracking risk of concrete at early age based on thermal stress analysis. J Therm Anal Calorim 105, 171–186 (2011). https://doi.org/10.1007/s10973-011-1512-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-011-1512-y

Keywords

Navigation