Skip to main content
Log in

Iso-conversional kinetic study of non-isothermal crystallization in glassy Se98Ag2 alloy

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The crystallization kinetics of glassy Se98Ag2 alloy is studied at different heating rates (5, 10, 15, and 20 K min−1) using differential scanning calorimetric technique. Endothermic and exothermic peaks are obtained at glass transition (T g) and crystallization temperature (T c). Four iso-conversional methods (Kissinger–Akahira–Sunose (KAS), Flynn–Wall–Ozawa (FWO), Tang and Straink) were used to determine the various kinetic parameters (crystallization temperature T α , activation energy of crystallization E α, order parameter n) in non-isothermal mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Vyazovkin S. Modification of the integral iso-conversional method to account for variation in the activation energy. J Comput Chem. 2001;22:178–83.

    Article  CAS  Google Scholar 

  2. Vyazovkin S, Wight CA. Isothermal and non-isothermal reaction kinetics in solids: in search of ways toward consensus. J Phys Chem A. 1997;101:8279–84.

    Article  CAS  Google Scholar 

  3. Vyazovkin S, Wight CA. Model-free and model-fitting approaches to kinetic analysis of isothermal and non-isothermal data. Thermochim Acta. 1999;340/341:53–68.

    Article  Google Scholar 

  4. Vyazovkin S. Advanced iso-conversional methods. J Therm Anal Calorim. 1997;49:1493–9.

    Article  CAS  Google Scholar 

  5. Calka A, Radlinski AP. DSC study of surface induced crystallization in Pd–Si metallic glasses. Acta Metall. 1987;35:1823–9.

    Article  CAS  Google Scholar 

  6. Ghosh G, Chandrasekaran M, Delaley L. Effect of micro-additions of Mo, P, Si and Ti on the thermal stability of Ni24Zr76 metallic glass. Acta Metall Mater. 1991;39:37–46.

    Article  CAS  Google Scholar 

  7. Vyazovkin S, Linert W. Reliability of conversion-time dependencies as predicted from thermal analysis data. Anal Chim Acta. 1994;295:101–7.

    Article  CAS  Google Scholar 

  8. Vyazovkin S. Kinetic analysis of reversible thermal decomposition of solids. Int J Chem Kinet. 1995;27:73–84.

    Article  CAS  Google Scholar 

  9. Vyazovkin S. A unified approach to kinetic processing of non-isothermal data. Int J Chem Kinet. 1996;28:95–101.

    Article  CAS  Google Scholar 

  10. Lad KN, Savalia RT, Pratap A, Dey GK, Banerjee S. Isokinetic and isoconversional study of crystallization kinetics of a Zr-based metallic glass. Thermochim Acta. 2008;473:74–80.

    Article  CAS  Google Scholar 

  11. Galwey AK. What is meant by the term ‘variable activation energy’ when applied in the kinetic analyses of solid state decompositions. Thermochim Acta. 2003;397:249–68.

    Article  CAS  Google Scholar 

  12. Joraid AA, Abu-Sehly AA, Abu El-Oyoun M, Alamri SN. Non-isothermal crystallization kinetics of amorphous Te51.3As45.7Cu3. Thermochim Acta. 2008;470:98–104.

    Article  CAS  Google Scholar 

  13. Joraid AA, Abu-Sehly AA, Alamri SN. Iso-conversional kinetic analysis of the crystallization phases of amorphous selenium thin films. Thin Solid Films. 2009;517:6137–41.

    Article  CAS  Google Scholar 

  14. Abu El-Oyoun M. Evaluation of the transformation kinetics of Ga7.5Se92.5 chalcogenide glass using the theoretical method developed and isoconversional analyses. J Alloys Compd. 2010;507:6–15.

    Article  CAS  Google Scholar 

  15. Vyazovkin S, Sbirrazzuoli N. Mechanism and kinetics of epoxy-amine cure studied by differential scanning calorimetry. Macromolecules. 1996;29:1867–73.

    Article  CAS  Google Scholar 

  16. Vyazovkin S, Sbirrazzuoli N. Isoconversional method to explore the mechanism and kinetics of multi-step epoxy cures. Macromol Rapid Commun. 1999;20:387–9.

    Article  CAS  Google Scholar 

  17. Vyazovkin S. Alternative description of process kinetics. Thermochim Acta. 1992;211:181–7.

    Article  CAS  Google Scholar 

  18. Zvetkov VL. Comparative DSC kinetics of the reaction of DGEBA with aromatic diamines. I. Non-isothermal kinetic study of the reaction of DGEBA with m-phenylene diamine. Polymer. 2001;42:6687–97.

    Article  CAS  Google Scholar 

  19. Chen D, Dollimore D. The possibility of manufacturing a single-pan differential thermal analyzer unit. Thermochim Acta. 1995;249:259–67.

    Article  CAS  Google Scholar 

  20. López M, Blanco M, Vazquez A, Ramos JA, Arbelaiz A, Gabilondo N, Echeverría JM, Mondragon I. J Therm Anal Calorim. 2009;96:567–73.

    Article  Google Scholar 

  21. Simon P, Thomas PS, Okuliar J, Ray AS. Determination of activation parameters. J Therm Anal Calorim. 2003;72:867–74.

    Article  CAS  Google Scholar 

  22. Malek J. Kinetic analysis of crystallization processes in amorphous materials. Thermochim Acta. 2000;355:239–53.

    Article  CAS  Google Scholar 

  23. Suñol JJ, Bonastre J. Crystallization kinetics of metallic glasses. J Therm Anal Calorim. 2010;102:447–50.

    Article  Google Scholar 

  24. Frumar M, Wagner T. Ag doped chalcogenide glasses and their applications. Curr Opin Solid State Mater Sci. 2003;7:117–26.

    Article  CAS  Google Scholar 

  25. Vyazovkin S. Computational aspects of kinetic analysis. Thermochim Acta. 2000;355:155–63.

    Article  CAS  Google Scholar 

  26. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

  27. Burnham AK, Dinh LN. A comparison of iso-conversional and model-fitting approaches to kinetic parameter estimation and application predictions. J Therm Anal Calorim. 2007;89:479–90.

    Article  CAS  Google Scholar 

  28. Brown ME, Gallagher PK. Hand book of thermal analysis and calorimetry, vol. 5. Amsterdam: Elsevier; 2008.

    Google Scholar 

  29. Ozawa T. Kinetics of non-isothermal crystallization. Polymer. 1971;12:150–8.

    Article  CAS  Google Scholar 

  30. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:86–188.

    Article  Google Scholar 

  31. Doyle CD. Series approximations to the equation of thermogravimetric data. Nature. 1965;207:290–1.

    Article  CAS  Google Scholar 

  32. Doyle CD. Kinetic analysis of thermogravimetric data. J Appl Polym Sci. 1961;5:285–92.

    Article  CAS  Google Scholar 

  33. Wanjun T, Donghua C. An integral method to determine variation in activation energy with extent of conversion. Thermochim Acta. 2005;443:72–6.

    Article  Google Scholar 

  34. Starink MJ. The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochim Acta. 2003;404:163–76.

    Article  CAS  Google Scholar 

  35. Starink MJ. Comments on precipitation kinetics of Al–1.12Mg2Si–0.35Si and Al–1.07Mg2Si–0.33Cu alloys. J Alloys Compd. 2007;443:L4–6.

    Article  Google Scholar 

  36. Fisher JC, Turnbull D. Rate of nucleation in condensed systems. J Chem Phys. 1949;17:71.

    Article  Google Scholar 

  37. Lu W, Yan B, Huang W. Complex primary crystallization kinetics of amorphous Finemet alloy. J Non-Cryst Solids. 2005;351:3320–4.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Mehta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dohare, C., Mehta, N. Iso-conversional kinetic study of non-isothermal crystallization in glassy Se98Ag2 alloy. J Therm Anal Calorim 109, 247–253 (2012). https://doi.org/10.1007/s10973-011-1696-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-011-1696-1

Keywords

Navigation