Skip to main content
Log in

Forward ion-exchange kinetics of heavy metal ions on the surface of carboxymethyl cellulose Sn(IV) phosphate composite nano-rod-like cation exchanger

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The Nernst–Planck equations with some additional assumptions was used in this study to investigate the forward kinetics and ion-exchange mechanism of heavy metal ions viz. Ni2+–H+, Cu2+–H+, Mn2+–H+ and Zn2+–H+ on the surface of carboxymethyl cellulose Sn(IV) phosphate composite nano-rod-like cation-exchanger. It was observed that heavy metals' exchange processes were imparted by the particle diffusion-controlled phenomenon. Some physical parameters i.e., fractional attainment of equilibrium U(τ), self-diffusion coefficients (D o), energy of activation (E a), and entropy of activation (ΔS*) were estimated. These investigations revealed that the equilibrium is attained faster at higher temperature probably because of availability of thermally enlarged matrix of carboxymethyl cellulose Sn(IV) phosphate composite nano-rod-like cation-exchange material. The physical parameters observed for this composite cation exchanger were also compared with other composite ion exchangers. The results showed that the ion-exchange phenomenon is more feasible on the surface of this composite cation exchanger as compared with the other ion exchangers which indicated the usefulness of this composite ion exchanger in various applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

C19H42BrN (CTAB):

N-Cetyl-N,N,N-trimethyl ammonium bromide

C5H5N:

Pyridine

DMW:

Demineralize water

EDTA:

Ethylene diamine tetra acetic acid

i.d.:

Internal diameter

U(τ):

Fractional attainment of equilibrium

D o :

Self diffusion coefficient

E a :

Energy of activation

ΔS*:

Entropy of activation

\( \overline{D}_{{{\text{H}}^{ + } }} \) :

Inter diffusion coefficient of counter ion H+

\( \overline{D}_{{{\text{M}}^{ 2+ } }} \) :

Inter diffusion coefficient of counter ion M2+

r o :

Particle radius

α:

Mobility ratio

\( Z_{{{\text{H}}^{ + } }} /{\text{Z}}_{{{\text{M}}^{ 2+ } }} \) :

Charge ratio

τ:

A dimensionless time parameter

H+ :

Hydrogen ion

M2+ :

Metal ion

S:

Slope

D:

The ionic jump distance

k :

The Boltzmann constant

R :

The gas constant

h :

Plank’s constant

T :

Temperature

References

  1. Zhang J, Li B, Wang Z, Cheng G, Dong S. Functionalized inorganic–organic composite material derivated by sol–gel for construction of mediated amperometric hydrogen peroxide biosensor. Anal Chim Acta. 1999;388:71–8.

    Article  CAS  Google Scholar 

  2. Lakshminarayana G, Nogami M, Kityk IV. Synthesis and characterization of anhydrous proton conducting inorganic-organic composite membranes for medium temperature proton exchange membrane fuel cells (PEMFCs). Energy. 2010;35:5260–8.

    Article  CAS  Google Scholar 

  3. Kameda T, Takeuchi H, Yoshioka T. Hybrid inorganic/organic composites of Mg–Al layered double hydroxides intercalated with citrate, malate, and tartrate prepared by co-precipitation. Mater Res Bull. 2009;44:840–5.

    Article  CAS  Google Scholar 

  4. Smaihi M, Jermoumi T, Marignan J, Noble RD. Organic-inorganic gas separation membranes: preparation and characterization. J Membr Sci. 1996;116:211–20.

    Article  CAS  Google Scholar 

  5. Fujiwara M, Sakamoto A, Shiokawa K, Patra AK, Bhaumik A. Mesoporous MFI zeolite material from silica–alumina/epoxy-resin composite material and its catalytic activity. Microporous Mesoporous Mater. 2011;142:381–8.

    Article  CAS  Google Scholar 

  6. Nabi SA, Naushad Mu, Inamuddin. Synthesis, characterization and analytical applications of a new highly thermally and chemically stable semi-crystalline inorganic ion-exchanger: Zr(IV) tungstomolybdate. J Hazard Mater. 2007;142:404–11.

    Article  CAS  Google Scholar 

  7. Khan AA, Inamuddin, Alam MM. Preparation, characterization and analytical applications of a new and novel electrically conducting fibrous type polymeric-inorganic composite material: polypyrrole Th(IV) phosphate used as a cation-exchanger and Pb(II) ion-selective membrane electrode. Mater Res Bull. 2005;40:289–305.

    Article  CAS  Google Scholar 

  8. Inamuddin, Khan SA, Siddiqui WA, Khan AA. Synthesis, characterization and ion-exchange properties of a new and novel ‘organic-inorganic’ hybrid cation-exchanger: Nylon-6,6, Zr(IV) phosphate. Talanta. 2007;71:841–7.

    Article  CAS  Google Scholar 

  9. Khan AA, Inamuddin. Preparation, physico-chemical characterization, analytical applications and electrical conductivity measurement studies of an ‘organic-inorganic’ composite cation-exchanger: polyaniline Sn(IV) phosphate. React Funct Polym. 2006;66:1649–63.

    Article  CAS  Google Scholar 

  10. Siddiqui WA, Khan SA, Inamuddin. Synthesis, characterization and ion-exchange properties of a new and novel ‘organic–inorganic’ hybrid cation-exchanger: poly(methyl Methacrylate) Zr(IV) phosphate. Colloids Surf A Physicochem Eng Asp. 2007;295:193–7.

    Article  CAS  Google Scholar 

  11. Khan AA, Khan A, Inamuddin. Synthesis and characterization of a new nanocomposite cation-exchanger poly-o-toluidine Th(IV) phosphate and its application in the fabrication of ion-selective membrane electrode. Talanta. 2007;72:699–710.

    Article  CAS  Google Scholar 

  12. Inamuddin, Ismail YA. Synthesis and characterization of poly-o-methoxyaniline Zr(1 V) molybdate Cd(II) selective composite cation-exchanger. Desalination. 2010;250:523–9.

    Article  CAS  Google Scholar 

  13. Alam Z, Inamuddin, Nabi SA. Synthesis and characterization of a thermally stable strong acidic Cd(II) selective composite cation-exchanger: polyaniline Ce(IV) molybdate. Desalination. 2010;250:515–22.

    Article  CAS  Google Scholar 

  14. Mohammad A, Inamuddin, Amin A. Nano-composite cation-exchanger polyvinyl alcohol Sn(IV) tungstate: preparation, characterization, thermodynamic study and its analytical application for the adsorption of aniline. J Therm Anal Calorim. (2011). doi:10.1007/s10973-011-1534-5.

  15. Mohammad A, Inamuddin, Amin A. Surfactant assisted preparation, characterization and thermodynamic study of pyridine adsorption on carboxymethyl cellulose Sn(IV) phosphate composite nano-rod like cation exchanger. J Therm Anal Calorim. doi:10.1007/s10973-011-1548-z.

  16. Mojumdar SC, Raki L. Preparation and properties of calcium silicate hydrate-poly (vinyl alcohol) nanocomposite materials. J Therm Anal Calorim. 2005;82:89–95.

    Article  CAS  Google Scholar 

  17. Mukherjee GS. Calorimetric characterization of membrane materials based on polyvinyl alcohol. J Therm Anal Calorim. 2009;96(1):21–5.

    Article  CAS  Google Scholar 

  18. Bittencourt PRS, Santos GLD, Pineda EAG. Hechenleitner. Studies on the thermal stability and film irradiation effect of poly (vinyl alcohol)/Kraft lignin blends. J Therm Anal Calorim. 2005;79:371–4.

    Article  CAS  Google Scholar 

  19. Cuiying L, Wei Z, Bo Z, Mei L, Canhui L. Preparation, characterization and thermal behaviour of poly(vinyl alcohol)/organic montmorillonite nanocomposites through solid-state shear pan-milling. J Therm Anal Calorim. 2011;103(1):205–12.

    Article  Google Scholar 

  20. Vlase G, Vlase T, Doca N, Perta M, Ilia G, Plesu N. Thermal behaviour of a sol-gel system containing aniline and organic phosphonates. J Therm Anal Calorim. 2009;97:473–8.

    Article  CAS  Google Scholar 

  21. Shady SA. Selectivity of cesium from fission radionuclides using resorcinol formaldehyde and zirconyl-molybdopyrophosphate as ion-exchangers. J Hazard Mater. 2009;167:947–52.

    Article  CAS  Google Scholar 

  22. Nilchi A, Naushad Mu, Al-Othman ZA. Development, characterization and ion exchange thermodynamics for a new crystalline composite cation exchange material: application for the removal of Pb2+ ion from a standard sample (Rompin Hematite). J Inorg Organomet Polym. doi:10.1007/s10904-011-9491-9.

  23. Zhang H, Pang JH, Wang D, Li A, Li X, Jiang Z. Sulfonated poly(arylene ether nitrile ketone) and its composite with phosphotungstic acid as materials for proton exchange membranes. J Membr Sci. 2005;264:56–64.

    Article  CAS  Google Scholar 

  24. Al-Othman ZA, Inamuddin, Naushad Mu. Forward (M2+–H+) and reverse (H+–M2+) ion exchange kinetics of the heavy metals on polyaniline Ce(IV) molybdate: a simple practical approach for the determination of regeneration and separation capability of ion exchanger. Chem Eng J. 2011;171:456–63.

    Article  CAS  Google Scholar 

  25. Al-Othman ZA, Inamuddin, Naushad Mu. Adsorption thermodynamics of trichloroacetic acid herbicide on polypyrrole Th(IV) phosphate composite cation-exchanger. Chem Eng J. 2011;169:38–42.

    Article  CAS  Google Scholar 

  26. Varshney KG, Rafiquee MZA, Somya A, Drabik M. Synthesis and characterization of a Hg(II) selective n-butyl acetate cerium(IV) phosphate as a new intercalated fibrous ion exchanger: effect of surfactants on the adsorption behaviour. Indian J Chem Sec A Inorg Phys Theor Anal Chem. 2006;45:1856–60.

    Google Scholar 

  27. Al-Othman ZA, Inamuddin, Naushad Mu. Determination of ion-exchange kinetic parameters for the poly-o-methoxyaniline Zr(IV) molybdate composite cation-exchanger. Chem Eng J. 2011;166:639–45.

    Article  CAS  Google Scholar 

  28. Nabi SA, Shalla AH. Synthesis, characterization and analytical application of hybrid; acrylamide zirconium (IV) arsenate a cation exchanger, effect of dielectric constant on distribution coefficient of metal ions. J Hazard Mater. 2009;163:657–64.

    Article  CAS  Google Scholar 

  29. Varshney KG, Tayal N. Polystyrene thorium(IV) phosphate as a new crystalline and cadmium selective fibrous ion exchanger. Synthesis characterization and analytical applications. Langmuir 2001;2589–2593.

  30. Moon JK, Kim KW, Jung CH, Shul YG, Lee EH. Preparation of organic-inorganic composite adsorbent beads for removal of radionuclides and heavy metal ions. J Radioanal Nucl Chem. 2000;246:299–307.

    Article  CAS  Google Scholar 

  31. Varshney KG, Agrawal A, Mojumdar SC. Pectin based cerium (IV) and thorium (IV) phosphates as novel hybrid fibrous ion exchangers synthesis, characterization and thermal behaviour. J Therm Anal Calorim. 2005;81:183–9.

    Article  CAS  Google Scholar 

  32. Nabi SA, Bushra R, Al-Othman ZA, Naushad Mu. Synthesis, characterization and analytical applications of a new composite cation exchange material Acetonitrile stannic(IV) selenite: adsorption behavior of toxic metal ions in nonionic surfactant medium. Sep Sci Technol. 2011;46:847–57.

    Article  CAS  Google Scholar 

  33. Gupta AP, Agarwal H, Ikram S. Studies on new composite material polyaniline Zirconium (IV) tungstophosphate; Th(IV) selective cation exchanger. J Indian Chem Soc. 2003;80:57–9.

    CAS  Google Scholar 

  34. Shaw MJ, Nesterenko PN, Dicinoski GW, Haddad PR. Selectivity behaviour of a bonded phosphonate–carboxylate polymeric ion exchanger for metal cations with varying eluent compositions. J Chromatogr A. 2003;997:3–11.

    Article  CAS  Google Scholar 

  35. Koseoglu TS, Kir E, Ozkorucuklu SP, Karamizrak E. Preparation and characterization of P2FAn/PVDF composite cation-exchange membranes for the removal of Cr(III) and Cu(II) by Donnan dialysis. React Funct Polym. 2010;70:900–7.

    Article  CAS  Google Scholar 

  36. Sundaram CS, Meenakshi S. Fluoride sorption using organic–inorganic hybrid type ion exchangers. J Colloids Interface Sci. 2009;333:58–62.

    Article  Google Scholar 

  37. Khan AA, Inamuddin. Applications of Hg(II) sensitive polyaniline Sn(IV) phosphate composite cation-exchange material in determination of Hg2+ from aqueous solutions and in making ion-selective membrane electrode. Sens Actuat B Chem. 2006;120:10–8.

    Article  Google Scholar 

  38. Li H, Zheng Z, Cao M, Cao R. Stable gold nanoparticle encapsulated in silica-dendrimers organic–inorganic hybrid composite as recyclable catalyst for oxidation of alcohol. Microporous Mesoporous Mater. 2010;136:42–9.

    Article  CAS  Google Scholar 

  39. Dallmann K, Buffon R. Sol–gel derived hybrid materials as heterogeneous catalysts for the epoxidation of olefins. Catal Commun. 2000;1:9–13.

    Article  CAS  Google Scholar 

  40. Chaudhari S, Sainkar SR, Patil PP. Corrosion protective poly(o-ethoxyaniline) coatings on copper. Electrochim Acta. 2007;53:927–33.

    Article  CAS  Google Scholar 

  41. Zhang Y, Zhang HM, Bi C, Zhu XB. An inorganic/organic self-humidifying composite membranes for proton exchange membrane fuel cell application. Electrochim Acta. 2008;53:4096–103.

    Article  CAS  Google Scholar 

  42. Malers JL, Sweikart MA, Horan JL, Turner JA, Herring AM. Studies of heteropoly acid/polyvinylidenedifluoride–hexafluoroproylene composite membranes and implication for the use of heteropoly acids as the proton conducting component in a fuel cell membrane. J Power Sources. 2007;172:83–8.

    Article  CAS  Google Scholar 

  43. Nabi SA, Alam Z, Inamuddin. A cadmium ion-selective membrane electrode based on strong acidic organic inorganic composite cation-exchanger: polyaniline Ce(IV) molybdate. Sens Transd J (S & T e-Digest). 2008;92:87–9.

    CAS  Google Scholar 

  44. Guizard C, Bac A, Barboiu M, Hovnanian N. Hybrid organic-inorganic membranes with specific transport properties: applications in separation and sensors technologies. Sep Purif Technol. 2001;25:167–80.

    Article  CAS  Google Scholar 

  45. Iwata M, Adachi T, Tonidokoro M. Hybrid sol–gel membranes of polyacrylonitrile–tetraethoxysilane composites for gas perm selectivity. J Appl Polym Sci. 2003;88:1752–9.

    Article  CAS  Google Scholar 

  46. Lacan P, Guizard C, Gall PL. Facilitated transport of ions through fixed-site carrier membranes derived from hybrid organic-inorganic materials. J Membr Sci. 1995;100:99–109.

    Article  CAS  Google Scholar 

  47. Kumar M, Tripathi BP, Shahi VK. Ionic transport phenomenon across sol–gel derived organic–inorganic composite mono-valent cation selective membranes. J Membr Sci. 2009;340:52–61.

    Article  CAS  Google Scholar 

  48. Nilchi A, Khanchi A, Atashi H, Bagheri A, Nematollahi L. The application and properties of composite sorbents of inorganic ion exchangers and polyacrylonitrile binding matrix. J Hazard Mater A. 2006;137:1271–6.

    Article  CAS  Google Scholar 

  49. Clearfield A, Medina AS. On the mechanism of ion exchange in crystalline zirconium phosphates—III: the dehydration behavior of sodium ion exchanged phases of α-zirconium phosphate. J Inorg Nucl Chem. 1970;32:2775–80.

    Article  CAS  Google Scholar 

  50. Alberti G, Bertrami R, Caseola M, Costantino U, Gupta JP. Crystalline insoluble acid salts of tetravalent metals—XXI ion exchange mechanism of alkaline earth metal: ions on crystalline ZrHNa(PO4)2·5H2O. J Inorg Nucl Chem. 1976;38:843–8.

    Article  CAS  Google Scholar 

  51. Saraswat IP, Srivastava SK, Sharma AK. Kinetics of ion exchange of some complex cations on chromium ferrocyanide gel. Can J Chem. 1979;57:1214–7.

    Article  CAS  Google Scholar 

  52. Singh NJ, Mathew J, Tandon SN. Kinetics of ion exchange. A radiochemical study of rubidium(1+)-hydrogen(1+) and silver(1+)-hydrogen(1+) exchange on zirconium arsenophosphate. J Phys Chem. 1980;84:21.

    Article  CAS  Google Scholar 

  53. Boyd GE, Adamson AW, Myers LS. The exchange adsorption of ions from aqueous solutions by organic zeolites. II. Kinetics. J Am Chem Soc. 1947;69:2836–48.

    Article  CAS  Google Scholar 

  54. Reichenberg D. Properties of ion-exchange resins in relation to their structure. III. Kinetics of exchange. J Am Chem Soc. 1953;75:589–97.

    Article  CAS  Google Scholar 

  55. Helfferich F. Ion exchange. McGraw-Hill: New York; 1962 (Chapter 6).

  56. Nernst WH. Die elektromotorische wirksamkeit der ionen. Z Phys Chem. 1889;4:129–81.

  57. Planck M. Über die erregung von elektricität und wärme in elektrolyten. Ann Physik und Chemie Neue Folge. 1890;39:161–86.

  58. Sari A, Çitak D, Tuzen M. Equilibrium, thermodynamic and kinetic studies on adsorption of Sb(III) from aqueous solution using low-cost natural diatomite. Chem Eng J 2010;162:521–527.

    Google Scholar 

  59. Varshney KG, Khan AA, Rani S. Forward and reversible ion exchange kinetics for Na+–H+ and K+–H+ exchanges on crystalline antimony (V) silicate cation exchanger. Colloids Surf A Physicochem Eng Asp. 1987;25:131–7.

    CAS  Google Scholar 

  60. Varshney KG, Gupta A, Singhal KC. Synthetic, analytical and kinetic studies on a crystalline and thermally stable phase of antimony (V) arsenosilicate cation exchanger. Colloids Surf A Physicochem Eng Asp. 1994;82:37–48.

    Article  CAS  Google Scholar 

  61. Gupta AP, Varshney PK. Investigation of some kinetic parameters for M2+–H+ exchanges on zirconium(IV) tungstophosphate—a cation exchanger. React Polym. 1997;32:67–74.

    Article  CAS  Google Scholar 

  62. Reilley CN, Schmidt RW, Sadek FS. Chelon approach (I) survey of theory and application. J Chem Educ. 1959;36:555–65.

    Article  CAS  Google Scholar 

  63. Kodama S, Fukui K, Mazume A. Relation of space velocity and space time yield. Ind Eng Chem. 1953;45:1644–8.

    Article  CAS  Google Scholar 

  64. Helfferich F, Plesset MS. Ion exchange kinetics: a nonlinear diffusion problem. J Chem Phys. 1958;28:418–24.

    Article  CAS  Google Scholar 

  65. Plesset MS, Helfferich F, Franklin JN. Ion exchange kinetics: a nonlinear diffusion problem. II. Particle diffusion controlled exchange of univalent and bivalent ions. J Chem Phys. 1958;29:1064–9.

    Article  CAS  Google Scholar 

  66. Khan AA, Alam MM, Mohammad F. Ion-exchange kinetics and electrical conductivity studies of polyaniline Sn(IV)tungstoarsenate; (SnO2)(WO3)(As2O5)4(C6H5NH2)2.nH2O: a new semi-crystalline ‘polymeric_/inorganic’ composite cation-exchange material. Electrochim Acta. 2003;48:2463–72.

    Article  Google Scholar 

  67. Varshney KG, Tayal N. Ion exchange of alkaline earth and transition metal ions on fibrous acrylonitrile based cerium (IV) phosphate—a kinetic study. Colloids Surf A Physicochem Eng Asp. 2000;162:49–53.

    Article  CAS  Google Scholar 

  68. Khan AA, Alam MM, Inamuddin, Mohammad F. Electrical conductivity and ion-exchange kinetic studies of a crystalline type ‘organic-inorganic’ cation-exchange material: polypyrrole/polyantimonic acid composite system, (Sb2O5) (–C4H2 NH–)·nH2O. J Electroanal Chem. 2004;572:67–78.

    Article  CAS  Google Scholar 

  69. Khan AA, Inamuddin. Cation-exchange kinetics and electrical conductivity measurement studies of an electrically conducting ‘organic-inorganic’ composite cation-exchanger: polypyrrole Th(IV) phosphate. J Appl Polym Sci. 2007;105:2806–15.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Department of Applied Chemistry, Z. H. College of Engineering and Technology, A.M.U. (Aligarh) for providing research facilities and the Deanship of Scientific Research at King Saud University for funding the study through the research group project No RGP-VPP-130.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Mohammad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohammad, A., Inamuddin, Amin, A. et al. Forward ion-exchange kinetics of heavy metal ions on the surface of carboxymethyl cellulose Sn(IV) phosphate composite nano-rod-like cation exchanger. J Therm Anal Calorim 110, 715–723 (2012). https://doi.org/10.1007/s10973-011-1887-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-011-1887-9

Keywords

Navigation