Skip to main content
Log in

Pyrolysis mechanism of trisbipyridineiron(II) chloride to iron nanoparticles

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Pyrolysis of trisbipyridineiron(II) chloride under controlled thermal conditions and inert atmosphere of argon gas yields a residue of iron nanoparticles. Evolved gas analysis by GC–MS and 1H NMR revealed emission of bipyridine, 6-chlorobipyridine, 6,6′-dichlorbipyridine, bipyridine hydrochloride, and hydrochloric acid as decomposition products. CHN, XRPD, EDXRF, TEM, AFM, and 57Fe Mössbauer spectroscopy of the residue indicated formation of pure iron nanoparticles in the size range of 50–72 nm. Based on these results a mechanism for thermal degradation of trisbipyridineiron(II) chloride has been worked out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Scheme 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Mehlig JP, Koehmstedt PL. Spectrophotometric determination of copper in ores with 2, 2′-bipyridine. Anal Chem. 1953;25:1920–1.

    Article  CAS  Google Scholar 

  2. Koeing RA, Johnson CR. Spectrophotometric determination of iron: II use of 2,2′-bipyridine. J Biol Chem. 1942;143:159–63.

    Google Scholar 

  3. Rodriquez-Ramos MM, Wilker JJ, Boil J. Metal bipyridine complexes in DNA backbones and effect on thermal stability. Inorg Chem. 2010;15:629–39.

    Article  Google Scholar 

  4. Weizman H, Tor Y. 2,2′-bipyridine lignoside: a novel building block for modifying DNA with intra-duplex metal complexes. J Am Chem Soc. 2001;123:3375–6.

    Article  CAS  Google Scholar 

  5. Czakis-Sulikowska D, Kaluzna J, Radwańska-Doczekalska J. Thermal studies of new Cu(I) and Ag(I) complexes with bipyridine isomers. J Therm Anal. 1998;54:103–13.

    Article  CAS  Google Scholar 

  6. Czakis-Sulikowska D, Malinowska A, Markiewicz M. Synthesis and thermal decomposition of new complexes of bipyridine isomers with Zn(II) and Cd(II) oxalates. J Therm Anal Colorim. 2000;60:151–6.

    Article  CAS  Google Scholar 

  7. Czakis-Sulikowska D, Kaluzna J, Radwańska-Doczekalska J. Synthesis, properties and thermal decomposition of bipyridine-oxalato complexes with Mn(II), Co(II), Ni(II) and Cu(II). Polish J Chem. 2000;74:607–14.

    CAS  Google Scholar 

  8. Czakis-Sulikowska D, Czylkowska A. Thermal and other properties of complexes of Mn(II), Co (II) and Ni(II) with 2,2′-bipyridine and trichloroacetates. J Therm Anal Colorim. 2003;74:349–60.

    Article  CAS  Google Scholar 

  9. Czakis-Sulikowska D, Czylkowska A. Complexes of Mn(II), Co (II), Ni(II) and Cu(II) with 4,4′-bipyridine and dichloroacetates. J Therm Anal Colorim. 2003;71:395–405.

    Article  CAS  Google Scholar 

  10. Czylkowska A, Markiewicz M. Coordination behavior and thermolysis of some rare-earth complexes with 4,4′-bipyridine and di- or trichloroacetates. J Therm Anal Colorim. 2010;100:717–23.

    Article  CAS  Google Scholar 

  11. Czylkowska A, Czakis-Sulikowska D, Kaczmarek A, Markiewicz M. Thermal behavior and other properties of Pr(III), Sm(III), Eu(III), Gd(III), Tb(III) complexes with 4,4′-bipyridine and trichloroacetates. J Therm Anal Colorim. 2011;105:331–9.

    Article  CAS  Google Scholar 

  12. Czakis-Sulikowska D, Radwańnska-Doczekalska J, Markiewicz M, Pietrzak M. Thermal characterization of new complexes of Zn(II) and Cd(II) with some bipyridine isomers and propionates. J Therm Anal Colorim. 2008;93:789–94.

    Article  CAS  Google Scholar 

  13. Kumar D, Kapoor IPS, Singh G, Geol N, Singh UP. Preparation, X-ray crystallography and thermolysis of transition metal nitrates of 2,2′-bipyridine (Part 63). J Therm Anal Colorim. 2011. doi: 10.1007/s10973-011-1781-5.

  14. Tian L, Ren N, Zhang JJ, Liu HM, Sun SJ, Ye HM, Wu KZ. Synthesis and thermal decomposition kinetics of two lanthanide complexes with cinnamic acid and 2,2′-bipyridine. J Therm Anal Colorim. 2010;99:349–56.

    Article  CAS  Google Scholar 

  15. Wanner S, Hilaire L, Wehrer P, Hindermann JP, Maire G. Obtaining tungsten bipyridine complexes via low temperature thermal treatment. Appl Catal A-Gen. 2000;203:55–70.

    Article  CAS  Google Scholar 

  16. Lee RH, Griwold E, Kleinberg J. Studies on the stepwise controlled decomposition of 2,2′-bipyridine complexes of Co(II) and Ni(II) chlorides. Inorg Chem. 1964;3:1278–83.

    Article  CAS  Google Scholar 

  17. Dhar SK, Basolo F. Thermal decomposition of the tris(2,2′-bipyridine) complexes of some first row transition group elements in the solid state. J Inorg Nucl Chem. 1963;25:37–44.

    Article  CAS  Google Scholar 

  18. Bujewski A, Walewski M, Grzedzicki K. Synthesis and thermal investigations of [Rh(bpy)3]X3, (bpy = 2,2′-dipyridyl; X = Cl-, Br-, I-, ReO4- and [M(bpy)3][CdnX2n + 3] (X = Cl-, Br-, I-) type complexes. Thermochim Acta. 1991;185:91–8.

    Article  Google Scholar 

  19. Akabori K, Matsuo H, Yamamoto Y. Thermal properties of mono(2,2′-bipyrinde)cobalt(II) and nickel(II) chloride. J Inorg Nucl Chem. 1971;33:2593–601.

    Article  CAS  Google Scholar 

  20. Czakis-Sulikowska D, Kałużna-Czaplińska J. Thermal properties of complexes of Mn(II), Fe(II), Co(II), Ni(II) with 2,2′-bipyridine or 4,4-bipyridine and thiocyanates. J Therm Anal Colorim. 2000;62:821–30.

    Article  CAS  Google Scholar 

  21. Guo L, Huang Q, Li X, Yang S. Iron nanoparticles: synthesis and applications in surface enhanced Raman scattering and electrocatalysis. Phys Chem Chem Phys. 2001;3:1661–5.

    Article  CAS  Google Scholar 

  22. Yang Y, Liu X, Guo X, Xu B. Synthesis of nano onion-like fullerenes by chemical vapor deposition using an iron catalyst supported on sodium chloride. J Nanopart Res. 2011;13:1979–86.

    Article  CAS  Google Scholar 

  23. Huang K, Chou K. Microstructure changes to iron nanoparticles during discharge/charge cycles. Electrochem Commun. 2007;9:1907–12.

    Article  CAS  Google Scholar 

  24. Beach DB, Rondinone AJ, Sumpter BG, Labinov SD, Richard RK. Solid-state combustion of metallic nanoparticles: new possibilities for alternative energy carrier. J Energy Res Technol. 2007;129:29–32.

    Article  CAS  Google Scholar 

  25. Šafařík I, Horská K, Šafaříková M. Magnetic nanoparticles for biomedicine. Fundamental Biomedical Technologies. 2011;5:363–72.

    Article  Google Scholar 

  26. Najaa G, Apiratikula R, Pavasante P, Voleskya B, Hawari J. Dynamic and equilibrium studies of the RDX removal from soil using CMC-coated zerovalent iron nanoparticles. Environ Pollut. 2009;157:2405–12.

    Article  Google Scholar 

  27. Elliott DW, Lien H, Zhang W. Degradation of lindane by zero-valent iron nanoparticles. J Environ Eng. 2009;135:317–24.

    Article  CAS  Google Scholar 

  28. Zhang D, Wei S, Kaila C, Su X, Wu J, Karki AB, Young DP, Guo Z. Carbon-stabilized iron nanoparticles for environmental remediation. Nanoscale. 2010;2:917–9.

    Article  CAS  Google Scholar 

  29. Nazir R, Mazhar M, Siddique M, Hussain ST. Effect of particle size and alloying with different metals on 57Fe Mossbauer spectra. Hyperfine Interact. 2009;189:85–9.

    Article  CAS  Google Scholar 

  30. Groβe G Mos-90 Version 2.2 Manual and program. Documentation 2nd ed. March 1992.

  31. Basalo F, Johnson R. Preparations and reactions of coordination compounds. In: Johnson R, editor. Coordination chemistry, the chemistry of metal complexes. New York: Benjamin Inc.; 1964.

    Google Scholar 

  32. Inskeep RG. Infra-red spectra of metal complex ions below 600 cm−1: The spectra of the tris complexes of 1,10-phenanthroline and 2,2′-bipyridine with transition metals iron (II) through zinc (II). J Inorg Nucl Chem. 1962;24:763–76.

    Article  Google Scholar 

  33. Miller JM, Balasanmugam K. Characterization of metal complexes of 1,10-phenanthroline, 2, 2′-bipyridine and their derivatives by fast atomic spectrometry. Can J Chem. 1989;67:1496–500.

    Article  CAS  Google Scholar 

  34. Charlet GR. Colorimetric determination of elements. New York: Elsevier Science Ltd.; 1989.

    Google Scholar 

  35. Nakanishi C, Saorilkeda, Isobe T, Senna M. Silica- [Fe(bpy)3]2+ composite particles with photo-responsive change of color and magnetic property. Mater Res Bull. 2002;37:647–51.

    Article  CAS  Google Scholar 

  36. Sato H, Tominaga T. Mössbauer studies of the thermal decomposition of tris(2,2′-bipyridine)iron(II) chloride and the structure of the isomers of 2,2′-bipyridineiron(II) chloride. Bull Chem Soc Jpn. 1976;49:697–700.

    Article  CAS  Google Scholar 

  37. Sato H, Tominaga T. A Mössbauer study on the thermal decomposition of tris(2,2′-bipyridine)iron(II) chloride. Radiochem Radioanal Lett. 1975;22:3–10.

    CAS  Google Scholar 

  38. Keuleers R, Janssen J, Desseyn HO. Instrument dependence and influence of heating rate, mass, ∆H, purge gas and flow rate on the difference between experimental and programmed temperature of the instrument. Thermochim Acta. 1999;333:67–71.

    Article  CAS  Google Scholar 

  39. Reich L, Patel SH, Stivala SS. Factors affecting the thermal decomposition of cadmium carbonate by TG. Thermochim Acta. 1989;138:147–60.

    Article  CAS  Google Scholar 

  40. Berbenni V, Marini A, Bruni G, Zerlia T. TG/FTIR: an analysis of the conditions affecting the combined TG/spectral response. Thermochim Acta. 1995;258:125–33.

    Article  CAS  Google Scholar 

  41. Reiff WM, Dockum B, Weber MA, Frankel RB. Magnetic ordering of mono(diimine)iron(II) chlorides, (2,2′-bipyridine)dichloroiron and (5,5′-dimethyl-2,2′-bipyridine)dichloroiron. Inorg Chem. 1975;14:800–6.

    Article  CAS  Google Scholar 

  42. Reiff WM, Long GJ. Mössbauer spectroscopy and coordination chemistry of iron. In: Long GJ, editor. Mössbauer spectroscopy applied to inorganic chemistry, vol. 1. New York: Plenum Press; 1984. p. 245–9.

    Google Scholar 

  43. Choi CJ, Dong XL, Kim BK. Characterization of Fe and Co nanoparticles synthesized by chemical vapor condensation. Scr Mater. 2001;44:2225–9.

    Article  CAS  Google Scholar 

  44. Sen P, Ghosh J, Abdullah A, Kumar P. Preparation of Cu, Ag, Fe and Al nanoparticles by exploding wire technique Vandana. Proc Indian Acad Sci (Chem Sci). 2003;115:499–508.

    Article  CAS  Google Scholar 

  45. Shao H, Lee H, Huang Y, Ko I, Kim C. Control of iron nanoparticles size and shape by thermal decomposition method. IEEE Trans Magn. 2005;41:3388–90.

    Article  CAS  Google Scholar 

  46. He Y, Sahoo Y, Wang S, Luo H, Prasad PN, Swihart MT. Laser-driven synthesis and magnetic properties of iron nanoparticles. J Nanopart Res. 2006;8:335–42.

    Article  CAS  Google Scholar 

  47. Laurent S, Forge D, Port M, Roch A, Robic C, Elst LV, Muller RN. Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physiochemical characterization and biological applications. Chem Rev. 2008;108:2064–110.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

RN and MM acknowledge the Higher Education Commission of Pakistan for financial support through indigenous scholarship scheme for Ph.D. studies in science and technology (300 Sch.), HEC project no. 1-308/ILPUFU/HEC/2009- and HIR/UMRG grant no.UM.C/625/1/1/6 and RG097110AET of University of Malaya.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Mazhar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nazir, R., Mazhar, M., Wakeel, T. et al. Pyrolysis mechanism of trisbipyridineiron(II) chloride to iron nanoparticles. J Therm Anal Calorim 110, 707–713 (2012). https://doi.org/10.1007/s10973-011-1919-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-011-1919-5

Keywords

Navigation