Skip to main content
Log in

Cation exchange, interlayer spacing, and thermal analysis of Na/Ca-montmorillonite modified with alkaline and alkaline earth metal ions

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Na-montmorillonites were exchanged with Li+, K+, Rb+, Cs+, Mg2+, Ca2+, Sr2+, and Ba2+, while Ca-montmorillonites were treated with alkaline and alkaline earth ions except for Ra2+ and Ca2+. Montmorillonites with interlayer cations Li+ or Na+ have remarkable swelling capacity and keep excellent stability. It is shown that metal ions represent different exchange ability as follows: Cs+ > Rb+ > K+ > Na+ > Li+ and Ba2+ > Sr2+ > Ca2+ > Mg2+. The cation exchange capacity with single ion exchange capacity illustrates that Mg2+ and Ca2+ do not only take part in cation exchange but also produce physical adsorption on the montmorillonite. Although interlayer spacing d 001 depends on both radius and hydration radius of interlayer cations, the latter one plays a decisive role in changing d 001 value. Three stages of temperature intervals of dehydration are observed from the TG/DSC curves: the release of surface water adsorbed (36–84 °C), the dehydration of interlayer water and the chemical-adsorption water (47–189 °C) and dehydration of bound water of interlayer metal cation (108–268 °C). Data show that the quantity and hydration energy of ions adsorbed on montmorillonite influence the water content in montmorillonite. Mg2+-modified Na-montmorillonite which absorbs the most quantity of ions with the highest hydration energy has the maximum water content up to 8.84%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bayram H, Önal M, Yilmz H, Sarikaya Y. Thermal analysis of a white calcium bentonite. J Therm Anal Calorim. 2010;101:873–9.

    Article  CAS  Google Scholar 

  2. Varma RS. Clay and clay supported reagents in organic synthesis. Tetrahedron. 2002;58:1235–55.

    Article  CAS  Google Scholar 

  3. Ma YJ. The resource, properties, utilization of bentonites. Food Chem. 2007;105:156–63.

    Article  Google Scholar 

  4. Pacula A, Bielan’ ska EL, Gawel A, Bahranowski K, Serwicka EM. Textural effects in powdered montmorillonite induced by freeze-drying and ultrasound pretreatment. Appl Clay Sci. 2006;32:64–73.

    Article  CAS  Google Scholar 

  5. Sternik D, Majdan M, Derylo-Marczewska A. Influence of basic red 1 dye adsorption on thermal stability of Na-clinoptilolite and Na-bentonite. J Therm Anal Calorim. 2011;103:607–15.

    Article  CAS  Google Scholar 

  6. Bhattacharyya KG, Gupta SS. Adsorptive accumulation of Cd(II), Co(II), Cu(II), Pb(II), and Ni(II) from water on montmorillonite: influence of acid activation. J Colloid Interface Sci. 2007;310:411–24.

    Article  CAS  Google Scholar 

  7. Lu LF, Frost RL, Cai JG. Desorption of benzoic and stearic acid adsorbed upon montmorillonites: a thermogravimetric study. J Therm Anal Calorim. 2010;99:377–84.

    Article  CAS  Google Scholar 

  8. Lu LF, Cai JG, Frost RL. Desorption of stearic acid upon surfactant adsorbed montmorillonite. J Therm Anal Calorim. 2010;100:141–4.

    Article  CAS  Google Scholar 

  9. Souza CEC, Nascimento RSV. Adsorption behavior of cationic polymers on bentonite. J Therm Anal Calorim. 2008;94:579–83.

    Article  CAS  Google Scholar 

  10. Wu PX, Zhang Q, Dai YP. Adsorption of Cu (II), Cd (II) and Cr(III) ions from aqueous solutions on humic acid modified Ca-montmorillonite. Geoderma. 2011;164:215–9.

    Article  CAS  Google Scholar 

  11. Green RC. Effect of salinity and temperature on the adsorption of Hg(II) from aqueous solutions by a Ca-montmorillonite. Appl Clay Sci. 2010;50:12–8.

    Article  Google Scholar 

  12. Ghayaza M, Le FL, Muller F. Pb(II) and Zn(II) adsorption onto Na- and Ca-montmorillonites in acetic acid/acetate medium: experimental approach and geochemical modeling. J Colloid Interface Sci. 2011;361:238–46.

    Article  CAS  Google Scholar 

  13. Panasyugin AS, Bondareva GV, Rat’ko AI. Adsorption of ammonia and sulfur dioxide by sorbents based on modified montmorillonite. Russ J Appl Chem. 2004;77:846–7.

    Article  CAS  Google Scholar 

  14. Bhattacharyya KG, Gupta SS. Kaolinite, montmorillonite, and their modified derivatives as adsorbents for removal of Cu (II) from aqueous solution. Sep Purif Technol. 2006;50:388–97.

    Article  CAS  Google Scholar 

  15. Mohamed MH, Khaled SAES, Nayef SAM. Immobilization of methylene blue onto bentonite and its application in the extraction of mercury (II). J Hazard Mater. 2010;178:94–100.

    Article  Google Scholar 

  16. Inoue A, Minato H. Ca–K exchange reaction and interstratification in montmorillonite. Clays Clay Min. 1979;27:393–401.

    Article  CAS  Google Scholar 

  17. Rytwo G, Banin A, Nir S. Exchange reactions in the Ca–Mg–Na-montmorillonite system. Clays Clay Min. 1996;44:276–85.

    Article  CAS  Google Scholar 

  18. Huertas FJ, Carretero P, Delgado J, Linares J, Samper J. An experimental study on the ion-exchange behavior of the smectite of Cabo de Gata (Almer’ıa Spain): FEBEX bentonite. J Colloid Interface Sci. 2001;239:409–16.

    Article  CAS  Google Scholar 

  19. Srour PK, McDonald LM. Effect of cosolvents on Ca-Na exchange onto Wyoming bentonite. Clays Clay Min. 2005;7253:536–47.

    Article  Google Scholar 

  20. Gast RG. Standard free energies of exchange for alkali metal cations on Wyoming bentonite. Soil Sci Soc Am Proc. 1969;33:37–41.

    Article  CAS  Google Scholar 

  21. Gast RG, Bladel VR, Deshpande KB. Standard heats and entropies of exchange for alkali metals on Wyoming bentonite. Soil Sci Soc Am Proc. 1969;33:661–4.

    Article  CAS  Google Scholar 

  22. Suarez DL, Zahow MF. Calcium–magnesium exchange selectivity of Wyoming montmorillonite in chloride, sulfate and perchlorate solutions. Soil Sci Soc Am. 1989;53:52–7.

    Article  CAS  Google Scholar 

  23. Lee JF, Lee CK, Juang LC. Size effects of exchange cation on the pore structure and surface fractality of montmorillonite. J Colloid Interface Sci. 1999;217:172–6.

    Article  CAS  Google Scholar 

  24. Halim NA, Ibrahim ZA, Ahmad AB. Intercalation of water and guest molecules within Ca(2+)-montmorillonite. J Therm Anal Calorim. 2010;102:983–8.

    Article  CAS  Google Scholar 

  25. Khan AH, Nurnabi M, Bala P. Studies on thermal transformation of Na-montmorillonite–glycine intercalation compounds. J Therm Anal Calorim. 2009;96:929–35.

    Article  CAS  Google Scholar 

  26. Tarasevich YI, Aksenenko EV. Quantum chemical modelling of ion exchange for alkali earth cations localised in interlayer structural gaps of layer silicate montmorillonite. Colloids Surf A. 2001;180:33–9.

    Article  CAS  Google Scholar 

  27. Balek V, Benes M, Subrt J. Thermal characterization of montmorillonite clays saturated with various cations. J Therm Anal Calorim. 2008;92:191–7.

    Article  CAS  Google Scholar 

  28. Sivakumar S, Damodar AD, Warrier KGK. Effect of the exchange ion on the properties of boehmite intercalated montmorillonite. Polyhedron. 1995;14:2201–4.

    Article  CAS  Google Scholar 

  29. L’alikova S, Pajtasova M, Ondrusova D. Thermal and spectral properties of natural bentonites and their applications as reinforced nanofillers in polymeric materials. J Therm Anal Calorim. 2010;100:745–9.

    Article  Google Scholar 

  30. Karamanis DT, Aslanoglou XA, Assimakopoulos PA, Gangas NH, Radioanal J. Characterization of an aluminum pillared montmorillonite with cation exchange properties. J Radioanal Nucl Chem. 1999;242:3–9.

    Article  CAS  Google Scholar 

  31. Herbert HJ, Moog HC. Cation exchange, interlayer spacing, and water content of MX-80 bentonite in high molar saline solutions. Eng Geol. 1999;54:55–65.

    Article  Google Scholar 

  32. Ganguly S, Dana K, Ghatak S. Thermogravimetric study of n-alkylammonium-intercalated montmorillonites of different cation exchange capacity. J Therm Anal Calorim. 2010;100:71–8.

    Article  CAS  Google Scholar 

  33. Gast RG. Alkali metal cation exchange on chambers montmorillonite. Soil Sci Soc Am. 1972;36:14–9.

    Article  CAS  Google Scholar 

  34. Sposito G, Holtzclaw KM, Charlet L, Jouany C, Page AL. Sodium–calcium and sodium–magnesium exchange on Wyoming bentonite in perchlorate and chloride background ionic media. Soil Sci Soc Am. 1983;47:51–6.

    Article  CAS  Google Scholar 

  35. Sposito G, Holtzclaw KM, Jouany C, Charlet L. Cation selectivity in sodium–calcium, sodium–magnesium, and calcium–magnesium exchange on Wyoming bentonite at 298 K. Soil Sci Soc Am. 1983;47:917–21.

    Article  CAS  Google Scholar 

  36. Sposito G, Jouany C, Holtzclaw KM, LeVesque CS. Calcium–magnesium exchange on Wyoming bentonite in the presence of adsorbed sodium. Soil Sci Soc Am. 1983;47:1081–5.

    Article  CAS  Google Scholar 

  37. Wen YK, Jun S. The theory of ionic polarization. Hefei: Anhui Education; 1985.

    Google Scholar 

  38. Hou MF, Ma BY, Wan HF. Mineralogical properties of various bentonites in China. Rock Min Anal. 2002;21:190–4.

    CAS  Google Scholar 

  39. Ma YJ. The source, properties and utilization of bentonites. Proc Soil Sci. 1994;22:21–8.

    CAS  Google Scholar 

  40. Song TY. Advanced inorganic chemistry. Beijing: Higher Education; 1997.

    Google Scholar 

Download references

Acknowledgements

Financial support from High Technology Research and Development Program of Urumqi in China is grateful acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojun Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Wang, X. & Wang, J. Cation exchange, interlayer spacing, and thermal analysis of Na/Ca-montmorillonite modified with alkaline and alkaline earth metal ions. J Therm Anal Calorim 110, 1199–1206 (2012). https://doi.org/10.1007/s10973-011-2109-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-011-2109-1

Keywords

Navigation