Skip to main content
Log in

The effect of SiO2 filler content and its organic compatibility on thermal stability of epoxy resin

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Thermal properties of the organic–inorganic bicontinuous nanocomposites prepared via in situ two-stage polymerization of various silanes, epoxy, and amine monomers are investigated, and the impact of filler content and its organic compatibility on thermal stability of these nanocomposites is studied. Two series of epoxy–silica nanocomposites, namely, EpSi-A and EpSi-B containing 0–20 wt% silica, are synthesized. An epoxy–silane coupling agent is employed to improve the organic compatibility of silica in EpSiB nanocomposites. The composites synthesized via two-stage polymerization are characterized by Fourier transform infrared spectroscopy, differential scanning calorimetry (DSC), and thermogravimetric (TG) analysis. DSC and TG/differential thermogravimetric results reveal substantially high glass transition (T g) and excellent thermal stability of the bicontinuous nanocomposites as compared with pristine epoxy polymer. Both T g and thermal properties, however, considerably vary depending on the organic compatibility of the nanocomposites. Significantly higher decomposition temperatures are recorded in case of EpSi-B nanocomposites owing to the chemical links between the epoxy and silica phases. Kinetic studies also show relatively higher activation energies of pyrolysis for EpSi-B nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Matejka L. POSS and other hybrid epoxy polymers. In: Pascault JP, Williams RJJ, editors. Epoxy polymers. Weinheim: Wiley; 2010. p. 137–57.

    Chapter  Google Scholar 

  2. Afzal A, Siddiqi HM. A comprehensive study of the bicontinuous epoxy–silica hybrid polymers: I. Synthesis, characterization and glass transition. Polymer. 2011;52:1345–55.

    Article  CAS  Google Scholar 

  3. Mascia L, Prezzi L, Haworth B. Substantiating the role of phase bicontinuity and interfacial bonding in epoxy–silica nanocomposites. J Mater Sci. 2006;41:1145–55.

    Article  CAS  Google Scholar 

  4. Nazir T, Afzal A, Siddiqi HM, Ahmad Z, Dumon M. Thermally and mechanically superior hybrid epoxy–silica polymer films via sol–gel method. Prog Org Coat. 2010;69:101–6.

    Article  Google Scholar 

  5. Macan J, Brnardic I, Orlic S, Ivankovic H, Ivankovic M. Thermal degradation of epoxy–silica organic–inorganic hybrid materials. Polym Degrad Stab. 2006;91:122–7.

    Article  CAS  Google Scholar 

  6. Liu YL, Hsu CY, Wei WL, Jeng RJ. Preparation and thermal properties of epoxy–silica nanocomposites from nanoscale colloidal silica. Polymer. 2003;44:5159–67.

    Article  CAS  Google Scholar 

  7. Ramirez C, Abad MJ, Barral L, Cano J, Diez FJ, Lopez J, Montes R, Polo J. Thermal behavior of a polyhedral oligomeric silsesquioxane with epoxy resin cured by diamines. J Therm Anal Calorim. 2003;72:421–9.

    Article  CAS  Google Scholar 

  8. Ramirez C, Rico M, Barral L, Diez J, Garcia-Garabal S, Montero B. Organic/inorganic hybrid materials from an epoxy resin cured by an amine silsesquioxane. J Therm Anal Calorim. 2007;87:69–72.

    Article  CAS  Google Scholar 

  9. Wu Q, Zhang C, Liang R, Wang B. Combustion and thermal properties of epoxy/phenyltrisilanol polyhedral oligomeric silsesquioxane nanocomposites. J Therm Anal Calorim. 2010;100:1009–15.

    Article  CAS  Google Scholar 

  10. Singh D, Narula AK. Studies on the curing and thermal behavior of diglycidyl ether of bisphenol A (DGEBA) in the presence of aromatic diimide–diacids. J Therm Anal Calorim. 2010;100:199–205.

    Article  CAS  Google Scholar 

  11. Villanueva M, Martin-Iglesias JL, Rodriguez-Anon JA, Proupin-Castineiras J. Thermal study of an epoxy system DGEBA (n = 0)/MXDA modified with POSS. J Therm Anal Calorim. 2009;96:575–82.

    Article  CAS  Google Scholar 

  12. Wu KH, Chao CM, Yang CJ, Chang TC. Synthesis and characterization of polydimethylsiloxane-cured organically modified silicate hybrid coatings. Polym Degrad Stab. 2006;91:2917–23.

    Article  CAS  Google Scholar 

  13. Afzal A, Siddiqi HM, Saeed S, Ahmad Z. The influence of epoxy functionalized silica nanoparticles on stress dispersion and crack resistance in epoxy based hybrids. Mater Express. 2011;1:299–306.

    Article  CAS  Google Scholar 

  14. Nazir T, Afzal A, Siddiqi HM, Saeed S, Dumon M. The influence of temperature and interface strength on the microstructure and performance of sol–gel silica–epoxy nanocomposites. Polym Bull. 2011;67:1539–51.

    Article  CAS  Google Scholar 

  15. Preghenella M, Pegoretti A, Migliaresi C. Thermo-mechanical characterization of fumed silica–epoxy nanocomposites. Polymer. 2005;46:12065–72.

    Article  CAS  Google Scholar 

  16. Zhang H, Zhang Z, Friedrich K, Eger C. Property improvements of in situ epoxy nanocomposites with reduced interparticle distance at high nanosilica content. Acta Mater. 2006;54:1833–42.

    Article  CAS  Google Scholar 

  17. Liu YL, Wei WL, Hsu KY, Ho WH. Thermal stability of epoxy–silica hybrid materials by thermogravimetric analysis. Thermochim Acta. 2004;412:139–47.

    Article  CAS  Google Scholar 

  18. Wu K, Shen MM, Hu Y, Xing W, Wang X. Thermal degradation and intumescent flame retardation of cellulose whisker/epoxy resin composites. J Therm Anal Calorim. 2011;104:1083–90.

    Article  CAS  Google Scholar 

  19. Tarrio-Saavedra J, Lopez-Beceiro J, Naya S, Artiaga R. Effect of silica content on thermal stability of fumed silica/epoxy composites. Polym Degrad Stab. 2008;93:2133–7.

    Article  CAS  Google Scholar 

  20. Cheng X, Shi W. Synthesis and thermal properties of silicone-containing epoxy resin used for UV-curable flame retardant coatings. J Therm Anal Calorim. 2011;103:303–10.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial support by the University Research Fund of Quaid-i-Azam University, Islamabad is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Humaira M. Siddiqi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Afzal, A., Siddiqi, H.M., Iqbal, N. et al. The effect of SiO2 filler content and its organic compatibility on thermal stability of epoxy resin. J Therm Anal Calorim 111, 247–252 (2013). https://doi.org/10.1007/s10973-012-2267-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-012-2267-9

Keywords

Navigation