Skip to main content
Log in

Non-isothermal kinetics of thermal degradation of chitin

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Thermogravimetric studies of chitin in air atmosphere were carried out at six rates of linear increase of the temperature. The kinetics and mechanism of the thermal decomposition reaction were evaluated from the TG data by iso-conversional calculation procedure of Kissinger–Akahira–Sunose recommended from ICTAC kinetics committee, as well as 27 mechanism functions. The comparison of the results obtained showed that they strongly depend on the selection of proper mechanism function for the process. Therefore, it is very important to determine the most probable mechanism function. In this respect, the iso-conversion calculation procedure turned out to be the most appropriate one. In the present work, the values of the apparent activation energy E, pre-exponential factor A in Arrhenius equation, as well as the changes of entropy ΔS , enthalpy ΔH , and Gibbs free energy ΔG for the formation of the activated complex from the reagent are calculated. All the calculations were performed using programs compiled by ourselves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Pillai CKS, Paul W, Sharma CP. Chitin and chitosan polymers: chemistry, solubility and fiber formation. Prog Polym Sci. 2009;34:641–78.

    Article  CAS  Google Scholar 

  2. Tokura S, Tamura H. Comprehensive glycoscience from chemistry to systems. Biology. 2007;2:449–75.

    Google Scholar 

  3. Prashanth KVH, Tharanathan RN. Chiti/chitosan: modifications and their unlimited application potential—an overview. Trends Food Sci Technol. 2007;18:117–31.

    Article  CAS  Google Scholar 

  4. Rinaudo M. Chitin and chitosan: properties and applications. Prog Polym Sci. 2006;31:603–32.

    Article  CAS  Google Scholar 

  5. Shahidi F, Abuzaytoun R. Chitin, chitosan and co-products: chemistry, production, applications and health effects. Adv Food Nutr Res. 2005;49:93–135.

    Article  CAS  Google Scholar 

  6. Benguella B, Benaissa H. Cadmium removal from aqueous solutions by chitin: kinetic and equilibrium studies. Water Res. 2002;36:2463–74.

    Article  CAS  Google Scholar 

  7. Ravi Kumar MNV. A review of chitin and chitosan applications. React Funct Polym. 2000;46:1–27.

    Article  Google Scholar 

  8. Goycoolea FM, Argüelles W, Peniche C, Higuera-Ciapara I. Chitin and chitosan. Dev Food Sci. 2000;41:265–308.

    Article  CAS  Google Scholar 

  9. Stawski D, Rabiej S, Herczynski L, Draczynski. Thermogravimetric analysis of chitin of different origin. J Thermal Anal Calorim. 2008;93:489–94.

    Article  CAS  Google Scholar 

  10. Akkaya G, Uzun I, Güzel F. Kinetics of the adsorption of reactive dyes by chitin. Dyes Pigment. 2007;73:168–77.

    Article  CAS  Google Scholar 

  11. Stolarek P, Ledakowicz S. Pyrolysis kinetics of chitin by non-isothermal thermogravimetry. Thermochim Acta. 2005;433:200–8.

    Article  CAS  Google Scholar 

  12. Dursun AY, Kalayci CS. Equilibrium, kinetic and thermodynamic studies on the adsorption of phenol onto chitin. J Hazard Mater. 2005;B123:151–7.

    Article  Google Scholar 

  13. Wanjun T, Cunxin W, Donghua C. Kinetic studies on the pyrolysis of chitin and chitosan. Polymer Degrad Stabil. 2005;87:389–94.

    Article  Google Scholar 

  14. Sağ Y, Aktay Y. Mass transfer and equilibrium studies for the sorption of chromium ions onto chitin. Process Biochem. 2000;36:157–73.

    Article  Google Scholar 

  15. Vlaev L, Nedelchev N, Gyurova K, Zagorcheva M. A comparative study of non-isothermal kinetics of decomposition of calcium oxalate monohydrate. J Anal Appl Pyrolysis. 2008;81:253–62.

    Article  CAS  Google Scholar 

  16. Atanassov A, Genieva S, Vlaev L. Study of the thermooxidative degradation kinetics of tetrafluoroethylene–ethylene copolymer filled with rice husks ash. Polym Plast Technol Eng. 2010;49:541–54.

    Article  CAS  Google Scholar 

  17. Boonchom B, Puttawong S. Thermodynamics and kinetics of the dehydration reaction of FePO4·2H2O. Phys B. 2010;405:2350–5.

    Article  CAS  Google Scholar 

  18. Boonchom B, Thongkam M. Kinetics and thermodynamics of the formation of MnFeP4O12. J Chem Eng Data. 2010;55:211–6.

    Article  CAS  Google Scholar 

  19. He W, Deng F, Liao G-X, Lin W, Jiang Y–Y, Jian X-G. Kinetics of thermal degradation of poly(aryl ether) containing phthalazinone and life estimation. J Thermal Anal Calorim. 2010;100:1055–62.

    Article  CAS  Google Scholar 

  20. Turmanova SCh, Genieva SD, Dimitrova AS, Vlaev LT. Nonisothermal degradation kinetics of filled with rice husk ash polypropene composites. eXPRESS Polym Letters. 2008;2:133–46.

    Article  CAS  Google Scholar 

  21. Vyazovkin S. Model-free kinetics. Staying free of multiplying entities without necessity. J Therm Anal Calorim. 2006;83:45–51.

    Article  CAS  Google Scholar 

  22. Šesták J, Berggren G. Study of the kinetics of the mechanism of solid-state reactions at increasing temperatures. Thermochim Acta. 1971;3:1–12.

    Article  Google Scholar 

  23. Cadenato A, Morancho JM, Fernandez-Francos X, Salla JM, Ramis X. Comparative kinetic study of the non-isothermal curing of bis-GMA/TEGDMA systems. J Therm Anal Calorim. 2007;89:233–44.

    Article  CAS  Google Scholar 

  24. Elbeyli IJ, Piskin S. Combustion and pyrolysis characteristics of tuncbilek lignite. J Therm Anal Calorim. 2006;83:721–6.

    Article  CAS  Google Scholar 

  25. Wanjun T, Juwen L, Hen Z, Zhiyong W, Cunxin W. New temperature integral approximate formula for non-isothermal kinetic analysis. J Therm Anal Calorim. 2003;74:309–15.

    Article  CAS  Google Scholar 

  26. Tang W, Liu Y, Zhang H, Wang C. New approximate formula for Arrhenius temperature integral. Thermochim Acta. 2003;408:39–43.

    Article  CAS  Google Scholar 

  27. Madhusudanan PM, Krishnan K, Ninan KN. New approximation for thr p(x) function in the evaluation of non-isothermal kinetic data. Thermochim Acta. 1986;97:189–201.

    Article  CAS  Google Scholar 

  28. Coats AW, Redfern JP. Kinetic parameters from thermogravimetric data. Nature (London). 1964;201:68–9.

    Article  CAS  Google Scholar 

  29. Vyazovkin S, Burnham AK, Criado JM, Perez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520(1–2):1–19.

    Article  CAS  Google Scholar 

  30. Kissinger HE. Reaction kinetics in different thermal analysis. J Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

  31. Senum GI, Yang RT. Rational approximations of the integral of the Arrhenius function. J Therm Anal. 1977;11:445–7.

    Article  Google Scholar 

  32. Flynn JH, Wall AL. A quick direct method for determination of activation energy from thermogravimetric data. Polym Lett. 1966;4:323–8.

    Article  CAS  Google Scholar 

  33. Ozawa TA. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.

    Article  CAS  Google Scholar 

  34. Popescu C. Integral method to analyze the kinetics of heterogeneous reactions under nonisothermal conditions. a variant on the Ozawa–Flynn–Wall method. Thermochim Acta. 1996;285:309–23.

    Article  CAS  Google Scholar 

  35. Wang H, Tao X, Newton E. Thermal degradation kinetics and lifetime prediction of a luminescent conducting polymer. Polym Int. 2004;53(1):20–6.

    Article  CAS  Google Scholar 

  36. Roy PK, Surekha P, Rajagopal C, Choudhary V. Thermal degradation of LDPE containing cobalt stearate as pro-oxidant. eXPRESS Polym Lett. 2007;1:208–16.

    Article  CAS  Google Scholar 

  37. Paik P, Kar KK. Kinetics of thermal degradation and estimation of lifetime for polypropylene particles: Effects of particle size. Polym Degrad Stab. 2008;93:24–35.

    Article  CAS  Google Scholar 

  38. Arora S, Lal S, Kumar S, Kumar M, Kumar M. Comparative degradation kinetic studies of three biopolymers: chitin, chitosan and cellulose. Arch Appl Sci Res. 2011;3(3):188–201.

    CAS  Google Scholar 

  39. Lopez FA, Merce ALR, Alguacil FJ, Lopez-Delgado A. A kinetic study on the thermal behaviour of chitosan. J Therm Anal Calorim. 2008;91:633–9.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lyubomir Vlaev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Georgieva, V., Zvezdova, D. & Vlaev, L. Non-isothermal kinetics of thermal degradation of chitin. J Therm Anal Calorim 111, 763–771 (2013). https://doi.org/10.1007/s10973-012-2359-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-012-2359-6

Keywords

Navigation