Skip to main content
Log in

Thermal and spectral behavior of (Y,Eu)VO4 powder

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Thermal analysis of YxEu1−xVO4 powder (used as “phosphor” coating for a high pressure mercury lamp) was done under a non-isothermal linear regime, both in a dynamic air regime and in a nitrogen atmosphere. The heating in air atmosphere gave on TG curve small rate of mass increase due to oxygenation and two endothermic effects are observed on DTA and DSC curves. By contrary, in nitrogen atmosphere a continuous stepped mass loss of powder (around 0.65 %), is recorded in the range of temperatures from room temperatures to 1,200 °C, and only one endothermic effect, to eliminate the gases accumulated on the crystallite surface. The powder was heated for 3 h in a Nabertherm furnace at 350, 800, and 1,100 °C using quite similar rate for heating program followed by a furnace cooling to room temperature. XRD and FTIR analyses showed the sample purification by thermal treatment and a very small increase of nanocrystallite sizes. The time evolution of the optical emission spectra in the range from 186.2 to 877.47 nm were recorded for different lamp powers in two different situations: with the outer bulb coated with YxEu1−xVO4 type “phosphor”, and without it. We observed that UV-Hg lines are absorbed by YxEu1−xVO4 type “phosphor” with different percents (100 % for 253.73 nm, 95 % for 312.65 nm, and 33 % for 365.12 nm) but the heating of the powder do not influence the UV-absorption properties of the powder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Borca E, Bercu M, Georgescu S, Hodorogea S, Cotoi E. XRD and FTIR characterization of nanocrystalline YVO4: Eu derived by coprecipitation process. Z Kristallogr. 2008;27:121–6.

    Google Scholar 

  2. Amurisana B, Hua L, Yuming Y, Zhilong L, Chunyan T, Hua Y. Luminescent properties of YVO4: Eu/SiO2 core–shell composite particles. J Nanopart Res. 2010;12:635–43.

    Article  Google Scholar 

  3. Artini C, Costa GA, Masini R. Study of the formation temperature of mixed LaREO3 (RE: Dy, Ho, Er, Tm, Yb, Lu) and NdGdO3 oxides. J Therm Anal Calorim. 2011;103:17–21.

    Article  CAS  Google Scholar 

  4. Xia Z, Chen D, Yang M, Ying T. Synthesis and luminescence properties of YVO4: Eu3+, Bi3+ phosphor with enhanced photoluminescence by Bi3+ doping. J Phys Chem Solids. 2010;71:175–80.

    Article  CAS  Google Scholar 

  5. Georgescu S, Cotoi E, Voiculescu AM, Toma O. Effects of particle size on the luminescence of YVO4: Eu nanocrystals. Rom Rep Phys. 2008;60:947–55.

    CAS  Google Scholar 

  6. Pinheiro da Silva MF, de Souza Machado, Carvalho F, da Silva MT, de Abreu Carvalho, Fantini M, Isolani PC. The role of citrate precursors on the morphology of lanthanide oxides obtained by thermal decomposition. J Therm Anal Calorim. 2010;99:385–90.

    Article  Google Scholar 

  7. Surendra Babu S, Babu P, Jayasankar CK, Tröster T, Sievers W, Wortmann G. Photoluminescence from the 5D0 level of Eu3+ ions in a phosphate glass under pressure. J Phys-Condens Mat. 2006;8:1927–38.

    Article  Google Scholar 

  8. Huignard A, Buissette V, Franville AC, Gacoin T, Boilot JP. Emission processes in YVO4: Eu nanoparticles. J Phys Chem B. 2003;107:6754–9.

    Article  CAS  Google Scholar 

  9. Zhou YH, Lin J. Morphology control and luminescence properties of YVO4: Eu phosphors prepared by spray pyrolysis. Opt Mater. 2005;27:1426–32.

    Article  CAS  Google Scholar 

  10. Yu M, Lin J, Fang J. Silica spheres coated with YVO4: Eu3+ layers via sol-gel process: a simple method to obtain spherical core-shell phosphors. Chem Mater. 2005;17:1783–91.

    Article  CAS  Google Scholar 

  11. Harabor NA, Harabor A, Palarie I. Influence of the outer bulb coated with YVO4:Eu3+ on the Hg HID lamp light quality. Phys AUC. 2010;20(1):90–6.

    Google Scholar 

  12. Harabor NA, Harabor A, Palarie I, Popescu IM, Zissis G. Time evolution of optical emission spectrum of a Hg-HID lamp exposed to X-ray. Plasma Chem Plasma P. 2010;30:449–59.

    Article  CAS  Google Scholar 

  13. Rotaru A, Goşa M, Rotaru P. Computational thermal and kinetic analysis. Software for non-isothermal kinetics by standard procedure. J Therm Anal Calorim. 2008;94(2):367–71.

    Article  CAS  Google Scholar 

  14. Rotaru A, Goşa M. Computational thermal and kinetic analysis. Complete standard procedure to evaluate the kinetic triplet from non-isothermal data. J Therm Anal Calorim. 2009;98(2):421–6.

    Article  Google Scholar 

  15. Rotaru P, Scorei R, Harabor A, Dumitru MD. Thermal analysis of a calcium fructoborate sample. Thermochim Acta. 2010;506(1):8–13.

    Article  CAS  Google Scholar 

  16. Constantinescu C, Morîntale E, Emandi A, Dinescu M, Rotaru P. J Therm Anal Calorim. 2011;104:707–16.

    Article  CAS  Google Scholar 

  17. Pop V, Chicinaş I, Jumate N. Physics of materials. Experimental methods. Cluj-Napoca: Presa Universitară Clujeană; 2001.

    Google Scholar 

  18. Wunderlich B. Thermal analysis. London: Academic Press Inc.; 1990.

    Google Scholar 

  19. Moanţă A, Ionescu C, Rotaru P, Socaciu M, Harabor A. Structural characterization, thermal investigation, and liquid crystalline behavior of 4-[(4-chlorobenzyl)oxy]-3,4′-dichloroazobenzene. J Therm Anal Calorim. 2010;102(3):1079–86.

    Article  Google Scholar 

  20. Patterson AI. The Scherrer formula for X-ray particle size determination. Phys Rev. 1939;56:978–82.

    Article  CAS  Google Scholar 

  21. Bally D, Beneş L, Mănăilă R. X-ray and neutrons diffraction. Bucureşti: Technical Publishing; 1972.

    Google Scholar 

  22. Harabor NA, Harabor A, Popescu I. Transient emission spectra of high pressure Hg lamp exposed to X-ray. UPB Sci Bul Ser A. 2011;73(3):173–84.

    Google Scholar 

  23. Ralchenko Y, Kramida AE, Reader J, and NIST ASD Team. 2008. NIST Atomic Spectra Database version 3.1.5). http://physics.nist.gov/asd3. Gaithersburg, MD: National Institute of Standards and Technology.

Download references

Acknowledgments

We thank to Dr I. Pălărie for giving access to the facilities (optical emission spectra measurements) existing in their laboratory. We thank to GOD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Harabor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harabor, A., Rotaru, P. & Harabor, N.A. Thermal and spectral behavior of (Y,Eu)VO4 powder. J Therm Anal Calorim 111, 1211–1219 (2013). https://doi.org/10.1007/s10973-012-2512-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-012-2512-2

Keywords

Navigation