Skip to main content
Log in

Study of thermal stabilization for polystyrene/carbon nanocomposites via TG/DSC techniques

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The degradability and durability for polymer–nanocomposites under various environmental conditions are from the essential fields of research. This study was carried out to examine the thermal stability of polystyrene loaded by carbon (C) nanoparticles up to 20 wt% content. The thermal degradation of PS/C nanocomposites were studied by thermogravimetry analysis and differential scanning calorimetry (DSC) under non-isothermal condition and inert gas atmosphere at constant heating rate 10 °C min−1. The variation of degradation characteristic temperatures as a function of C content has been a non-monotonic behavior. The obtained results suggested that the C nanoparticles act as a promoter slowing down the degradation and providing a protective barrier to the nanocomposite, except 5 wt% C content. The latter exception was confirmed by DSC curve through the emergence of a small endothermic peak before the fundamental endothermic, melting, one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Chrissafis K, Bikiaris D. Can nanoparticles really enhance thermal stability of polymers? Part I: an overview on thermal decomposition of addition polymers. Thermochim Acta. 2011;523:1–24.

    Article  CAS  Google Scholar 

  2. Xiao M, Sun L, Liu J, Li Y, Gong K. Senthesis and properties of polystyrene/graphite nanocomposites. Polymer. 2002;43:2245–8.

    Article  CAS  Google Scholar 

  3. Kuljanin J, Marinovic-Cincovic M, Zec S, Comor MI, Nedeljkovic JM. Influence of Fe2O3-filler on the thermal properties of polystyrene. J Mater Sci Lett. 2003;22:235–7.

    Article  CAS  Google Scholar 

  4. Serge Bourbigot S, Gilman JW, Wilkie CA. Kinetic analysis of the thermal degradation of polystyrene-montmorillonite nanocomposite. Polym Degrad Stab. 2004;84:483–92.

    Article  Google Scholar 

  5. Jang BN, Wilkie CA. The thermal degradation of polystyrene nanocomposite. Polymer. 2005;46:2933–42.

    Article  CAS  Google Scholar 

  6. Kuljanin-Jakovljevic J, Marinovic-Cincovic M, Stojanovic Z, Krkljes A, Abazovic ND, Comor MI. Thermal degradation kinetics of polystyrene/cadmium sulfide composites. Polym Degrad Stab. 2009;94:891–7.

    Article  CAS  Google Scholar 

  7. Vaziri HS, Omaraei IA, Abadyan M, Mortezaei M, Yousefi N. Thermophysical and rheological behavior of polystyrene/silica nanocomposites: investigation of nanoparticle content. Mater Des. 2011;. doi:10.1016/j.matdes.2011.01.022.

    Google Scholar 

  8. Bera O, Pilic B, Pavlicevic J, Jovicic M, Hollo B, Szecsenyi KM, Spirkova M. Preparation and thermal properties of polystyrene/silica nanocomposites. Thermochim Acta. 2011;515:1–5.

    Article  CAS  Google Scholar 

  9. Jacob J, G.Z. Anil GZ, Bhowmick K. Ethylene vinyl acetate/expanded graphite nanocomposites by solution intercalation: preparation, characterization and properties. J Mater Sci. 2008;43:702–8.

    Article  Google Scholar 

  10. Peterson JD, Vyazovkin S, Wight CA. Kinetics of the thermal and thermo-oxidative degradation of polystyrene, polyethylene and poly(propylene). Macromol Chem Phys. 2001;202:775–84.

    Article  CAS  Google Scholar 

  11. Lu W, Yan B, Huang W. Complex primary crystallization kinetics of amorphous Finemet alloy. J Non-Cryst Solids. 2005;351:3320–4.

    Article  CAS  Google Scholar 

  12. Kotkata MF, Mansour ShA. Study of glass transition kinetics of selenium matrix alloyed with up to 10 % indium. J Therm Anal Calorim. 2011;103:555–61.

    Article  CAS  Google Scholar 

  13. Kotkata MF, Mansour ShA. Crystallization process analysis for Se0.95In0.05 and Se0.90In0.10 chalcogenide glasses using the contemporary isoconversional models. J Therm Anal Calorim. 2011;103:957–65.

    Article  CAS  Google Scholar 

  14. Leo CJ, Thakur AK, Subba Rao GV, Chowdari BVR. Effect of glass–ceramic filler on properties of polyethylene oxide–LiCF3SO3 complex. J Power Sources. 2003;115:295–304.

    Article  CAS  Google Scholar 

  15. Madorsky SL. Thermal degradation of organic polymers. New York: Interscience Publishers; 1964.

    Google Scholar 

  16. Reich L, Stivala SS. Elements of polymer degradation. New York: McGraw-Hill; 1971.

    Google Scholar 

  17. Schnabel W. Polymer degradation: principles and practical applications. New York: Macmillan; 1981.

    Google Scholar 

  18. Grassie N, Scott G. Polymer degradation and stabilisation. Cambridge: Cambridge University Press; 1985.

    Google Scholar 

  19. Lang AL, Vyazovkin S. Phase and thermal stabilization of ammonium nitrate in the form of PVP–AN glass. Mater Lett. 2008;62:1757–60.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sh. A. Mansour.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mansour, S.A. Study of thermal stabilization for polystyrene/carbon nanocomposites via TG/DSC techniques. J Therm Anal Calorim 112, 579–583 (2013). https://doi.org/10.1007/s10973-012-2595-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-012-2595-9

Keywords

Navigation