Skip to main content
Log in

Performance and calibration of the Flash DSC 1, a new, MEMS-based fast scanning calorimeter

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

For the new Flash DSC 1, the temperature windows-to-operate—the temperature ranges where the real, achieved scan rate is constant—have been determined for unloaded sensors under various conditions like purge gas and flow rate variations; cooling to −90 °C and heating to 450 °C; scan rates from 1 up to 20,000 °C s−1 in heating and 15,000 °C s−1 in cooling. Compared to nitrogen, helium purge gas offers better access to low-temperature transitions and enables faster cooling. Drawback is the decreased temperature window-to-operate in heating at the high-temperature side. The temperature calibration protocol according to the recent DIN SPEC 91127 for sample mass and scan rate was found to be useful. The correction factors are maximal −1.4 °C as measured for 1 μg at 1,000 °C s−1 heating. Using liquid crystalline substances it was proved that the Flash DSC 1 has symmetry, meaning that calibration data found in heating also can be applied in cooling.

Graphical abstract

 

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Adamovsky S, Minakov A, Schick C. Scanning microcalorimetry at high cooling rate. Thermochim Acta. 2003;403(1):55–63.

    Article  CAS  Google Scholar 

  2. Allen L, Ramanath G, Lai S, Ma Z, Lee S, Allman D, et al. 1,000,000 °C s−1 thin film electrical heater: in situ resistivity measurements of Al and Ti/Si thin films during ultra rapid thermal annealing. Appl Phys Lett. 1994;64(4):417–9.

    Article  CAS  Google Scholar 

  3. Danley RL, Caulfield PA, Aubuchon SR. A rapid-scanning differential scanning calorimeter. Am Lab. 2008;40(1):9–11.

    CAS  Google Scholar 

  4. Efremov MY, Olson E, Zhang M, Lai S, Schiettekatte F, Zhang Z, et al. Thin-film differential scanning nanocalorimetry: heat capacity analysis. Thermochim Acta. 2004;412(1):13–23.

    Article  CAS  Google Scholar 

  5. Efremov MY, Olson EA, Zhang M, Zhang Z, Allen LH. Probing glass transition of ultrathin polymer films at a time scale of seconds using fast differential scanning calorimetry. Macromolecules. 2004;37(12):4607–16.

    Article  CAS  Google Scholar 

  6. Efremov MY, Warren J, Olson E, Zhang M, Kwan A, Allen L. Thin-film differential scanning calorimetry: a new probe for assignment of the glass transition of ultrathin polymer films. Macromolecules. 2002;35(5):1481–3.

    Article  CAS  Google Scholar 

  7. Mathot VBF, Poel GV, Pijpers TFJ. Benefits and potentials of high performance differential scanning calorimetry (HPer DSC). Handb Therm Anal Calorim. 2008;93:319–27.

    Google Scholar 

  8. Minakov A, Adamovsky S, Schick C. Non-adiabatic thin-film (chip) nanocalorimetry. Thermochim Acta. 2005;432(2):177–85.

    Article  CAS  Google Scholar 

  9. Minakov AA, Schick C. Ultrafast thermal processing and nanocalorimetry at heating and cooling rates up to 1 MK/s. Rev Sci Instrum. 2007;78(7):073902–10.

    Article  Google Scholar 

  10. Pijpers TFJ, Mathot VBF, Goderis B, Scherrenberg RL, van der Vegte EW. High-speed calorimetry for the study of the kinetics of (de) vitrification, crystallization, and melting of macromolecules. Macromolecules. 2002;35(9):3601–13.

    Article  CAS  Google Scholar 

  11. Zhuravlev E, Schick C. Fast scanning power compensated differential scanning nano-calorimeter: 1. The device. Thermochim Acta. 2010;505(1):1–13.

    Article  CAS  Google Scholar 

  12. Zhuravlev E, Schick C. Fast scanning power compensated differential scanning nano-calorimeter: 2. Heat capacity analysis. Thermochim Acta. 2010;505(1):14–21.

    Article  CAS  Google Scholar 

  13. Zhang M, Efremov MY, Schiettekatte F, Olson E, Kwan A, Lai S, et al. Size-dependent melting point depression of nanostructures: nanocalorimetric measurements. Phys Rev B. 2000;62(15):10548.

    Article  CAS  Google Scholar 

  14. Recommendation for temperature calibration of fast scanning calorimeters (FSCs) for sample mass and scan rate. DIN SPEC 91127. Berlin: DIN Deutsches Institut für Normung e. V.; 2011.

  15. Iervolino E, van Herwaarden A, van Herwaarden F, van de Kerkhof E, van Grinsven P, Leenaers A, et al. Temperature calibration and electrical characterization of the differential scanning calorimeter chip UFS1 for the Mettler-Toledo Flash DSC 1. Thermochim Acta. 2011;522(1):53–9.

    Article  CAS  Google Scholar 

  16. Mathot V, Pyda M, Pijpers T, Vanden Poel G, Van de Kerkhof E, Van Herwaarden S, et al. The Flash DSC 1, a power compensation twin-type, chip-based fast scanning calorimeter (FSC): first findings on polymers. Thermochim Acta. 2011;522(1):36–45.

    Article  CAS  Google Scholar 

  17. van Herwaarden S, Iervolino E, van Herwaarden F, Wijffels T, Leenaers A, Mathot V. Design, performance and analysis of thermal lag of the UFS1 twin-calorimeter chip for fast scanning calorimetry using the Mettler-Toledo Flash DSC 1. Thermochim Acta. 2011;522(1):46–52.

    Article  Google Scholar 

  18. PerkinElmer. www.hyperdsc.com.

  19. Schick C. Differential scanning calorimetry (DSC) of semicrystalline polymers. Anal Bioanal Chem. 2009;395(6):1589–611.

    Article  CAS  Google Scholar 

  20. Flynn JH. Thermodynamic properties from differential scanning calorimetry by calorimetric methods. Thermochim Acta. 1974;8(1):69–81.

    Article  CAS  Google Scholar 

  21. Sarge SM, Gmelin E, Höhne GWH, Cammenga HK, Hemminger W, Eysel W. The caloric calibration of scanning calorimeters. Thermochim Acta. 1994;247(2):129–68.

    Article  CAS  Google Scholar 

  22. Vanden Poel G, Mathot VBF. High-speed/high performance differential scanning calorimetry (HPer DSC): temperature calibration in the heating and cooling mode and minimization of thermal lag. Thermochim Acta. 2006;446(1):41–54.

    Google Scholar 

  23. Neuenfeld S, Schick C. Verifying the symmetry of differential scanning calorimeters concerning heating and cooling using liquid crystal secondary temperature standards. Thermochim Acta. 2006;446(1):55–65.

    Article  CAS  Google Scholar 

  24. Sarge SM, Hoehne GWH, Cammenga HK, Eysel W, Gmelin E. Temperature, heat and heat flow rate calibration of scanning calorimeters in the cooling mode. Thermochim Acta. 2000;361(1):1–20.

    Article  CAS  Google Scholar 

  25. Neuenfeld S. Mettler-Toledo; 2007. p. 9-10.

Download references

Acknowledgements

The authors like to acknowledge the contributions of the following members of the thermal analysis department of DSM Resolve: Wil van Eijk and Asifur Rahman. Support for SciTe from the Dutch Ministry of Economic Affairs/SenterNovem TSGE3009 is greatly acknowledged, as well as from the EU-FP7-NaPolyNet/Coordination Support Action NMP-2007-2.1-3/Characterization of nanostructured materials, see http://www.napolynet.eu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geert Vanden Poel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poel, G.V., Istrate, D., Magon, A. et al. Performance and calibration of the Flash DSC 1, a new, MEMS-based fast scanning calorimeter. J Therm Anal Calorim 110, 1533–1546 (2012). https://doi.org/10.1007/s10973-012-2722-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-012-2722-7

Keywords

Navigation