Skip to main content
Log in

Influence of the nanoparticle type on the thermal decomposition of the green starch/poly(vinyl alcohol)/montmorillonite nanocomposites

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this study, some aspects concerning the thermal decomposition of starch/poly(vinyl alcohol) (PVA)/montmorillonite (MMT) nanocomposites with 2 wt% nanoclay, prepared by melt mixing method, were studied. For these loadings, the inorganic fillers are well dispersed through the PVA/starch matrix, i.e., the nanocomposites formed are mostly intercalated hybrids. The aim of this article is to establish the effect of the nanofiller nature on the thermal decomposition of the starch/PVA/MMT nanocomposites. The thermal behavior of the 50 wt% starch/50 wt% PVA blend and its nanocomposites with 2 wt% nanoclay has been investigated by thermogravimetric analysis coupled with Fourier transform-infrared spectroscopy and mass spectrometry (MS). The volatile compounds resulting during the thermal degradation were studied by in situ vapor phase FT-IR spectroscopy and MS technique under a controlled temperature/time program. Apart from the identification of the volatile compounds, some conclusions on the nanoclays effect on the degradation mechanism and formation of the volatile compounds in accordance with the previously developed general mechanisms for PVA and starch degradation have been formulated. The clay–PVA/starch nanocomposites show completely different degradation product distribution patterns, which may be attributed to the presence of the head-to-head structures and Si–O–C linkages formed between clay and blend components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1
Scheme 2
Fig. 6

Similar content being viewed by others

References

  1. Pielichowski J, Pielichowski KJ. Application of thermal analysis for the investigation of polymer degradation processes. J Therm Anal Calorim. 1995;43:505–8.

    Article  CAS  Google Scholar 

  2. Chai W-L, Chow J-D, Chen C-C, Chuang F-S, Lu W-C. Evaluation of the biodegradability of polyvinyl alcohol/starch blends: a methodological comparison of environmentally friendly materials. J Polym Environ. 2009;17:71–82.

    Article  CAS  Google Scholar 

  3. Patachia-Bodonea S. Blends based on poly(vinyl alcohol) and the products based on this polymers. Chap 8. In: Vasile C, Kulshereshtha AK, editors. Handbook of polymer blends and composites, vol. 4A. Shawbury: RAPRA Technology Ltd; 2003. p. 288–365.

    Google Scholar 

  4. Preechawong D, Peesan M, Rujiravanit R, Supaphol P. Preparation and properties of starch/poly(vinyl alcohol) composite foams. Macromol Symp. 2004;216:217–27.

    Article  CAS  Google Scholar 

  5. Cinelli P, Chellini E, Gordon SH, Imam SH. Characteristics and degradation of hybrid composite films prepared from PVA, starch and lignocellulosics. Macromol Symp. 2003;197:143–56.

    Article  CAS  Google Scholar 

  6. Park JS, Yang JH, Kim DH, Lee DH. Degradability of expanded starch/PVA blends prepared using calcium carbonate as the expanding inhibitor. J Appl Polym Sci. 2004;93:911–9.

    Article  CAS  Google Scholar 

  7. Hashem MM, Kesting W, Hebeish AA, Abou-Zeid NY, Schollmeyer F. Characterization and application of poly(vinyl alcohol)/starch composite as a sizing agent. Angew Makromol Chem. 1996;242:149–63.

    Article  Google Scholar 

  8. Sreedhar B, Sairam M, Chattopadhhyay DK, Syamala Rathnam PA, Mohan Rao DV. Thermal, mechanical, and surface characterization of starch–poly(vinyl alcohol) blends and borax-crosslinked films. J Appl Polym Sci. 2005;96:1313–22.

    Article  CAS  Google Scholar 

  9. Follain N, Joly C, Dole P, Bliard C. Properties of starch based blends. Part 2. Influence of poly vinyl alcohol addition and photocrosslinking on starch based materials mechanical properties. Carbohydr Polym. 2005;60:185–92.

    Article  CAS  Google Scholar 

  10. Liu Z, Feng Y, Yi X-S. Thermoplastic starch/PVA compounds: preparation, processing and properties. J Appl Polym Sci. 1999;74:2667–73.

    Article  CAS  Google Scholar 

  11. Ali SS, Tang X, Alavi S, Faubion J. Structure and physical properties of starch/poly vinyl alcohol/sodium montmorillonite nanocomposite films. J Agric Food Chem. 2011;59(23):12384–95.

    Article  CAS  Google Scholar 

  12. Tang X, Alavi S. Recent advances in starch, polyvinylalcohol based polymer blends, nanocomposites and their biodegradability. Carbohydr Polym. 2011;85:7–16.

    Article  CAS  Google Scholar 

  13. He Y, Zhang Y. Thermoplastic starch/polyvinyl alcohol/montmorillonite nanocomposites. Chinese Journal of Applied Chemistry. 2011;07. doi:CNKI:SUN:YYHX.0.2011-07-005.

  14. Gomes ME, Ribeiro AS, Malafaya PB, Reis RL, Cunha AM. A new approach based on injection moulding to produce biodegradable starch based polymeric scaffolds: morphology, mechanical and degradation behaviour. Biomaterials. 2001;22:883–8.

    Article  CAS  Google Scholar 

  15. Vaz CM, Reis RL, Cunha AM. Degradation model of starch-EVOH plus HA composites. Mater Res Innovations. 2001;4:375–80.

    Article  CAS  Google Scholar 

  16. Abd Alla SG, Nizam El-Din HM, El-Naggar AWM. Electron beam synthesis and characterization of poly(vinyl alcohol)/montmorillonite nanocomposites. J Appl Polym Sci. 2006;102:1129–38.

    Article  Google Scholar 

  17. Dimonie D, Radovici C, Trandafir I, Pop SF, Dumitriu I, Fierascu R, Jecu L, Petrea C, Zaharia C, Coşerea R. Some aspects concerning the silicate delamination for obtaining polymeric bio-hybrids based on starch. Rev Roum Chim. 2011;56(7):685–90.

    CAS  Google Scholar 

  18. Dimonie D, Constantin R, Vasilievici G, Popescu M-C, Garea S. The dependence of the XRD morphology of some bionanocomposites on the silicate treatment. J Nanomater 2008. doi:10.1155/2008/538421.

  19. Dimonie D, Socoteanu R, Doncea S, Pop FS, Petre C, Dumitriu I, Fierascu R. The miscibility estimation of some nanocomposites based on starch. e-Polymers. 2011;090. http://www.e-polymers.org.

  20. Greene-Kelly R. The differential thermal investigation of clays. London: Mineralogical Society (Great Britain); 1957.

    Google Scholar 

  21. Xie W, Gao Z, Liu K, Pan W-P, Vaia R, Hunter D, Singh A. Thermal characterization of organically-modified montmorillonite. Thermochim Acta. 2001;339(367–368):2979–90.

    Google Scholar 

  22. Zheng X, Wilkie CA. Flame retardancy of polystyrene nanocomposites based on an oligomeric organically-modified clay containing phosphate. Polym Degrad Stab. 2003;81:551–7.

    Article  Google Scholar 

  23. Wan C, Qiao X, Zhang Y, Zhang Y. Effect of different clay treatment on morphology and mechanical properties of PVC–clay nanocomposites. Polym Testing. 2003;22:453–61.

    Article  CAS  Google Scholar 

  24. Vasile C, Stoleriu A, Popescu M-C, Duncianu C, Kelnar I, Dimonie D. Morphology and thermal properties of some green starch/poly(vinyl alcohol)/montmorillonite nanocomposites. Cellul Chem Technol. 2008;42(9–10):549–68.

    CAS  Google Scholar 

  25. Bourbigot S, Gilman JW, Wilkie CA. Kinetic analysis of the thermal degradation of polystyrene-montmorillonite nanocomposite. Polym Degrad Stab. 2004;84:483–92.

    Article  CAS  Google Scholar 

  26. Xie W, Gao ZM, Pan WP, Hunter D, Singh A, Vaia RA. Thermal degradation chemistry of alkyl quaternary ammonium montmorillonite. Chem Mater. 2001;13:2979–90.

    Article  CAS  Google Scholar 

  27. Chang JH, Jang TG, Ihn KJ, Lee WK, Sur GS. Poly(vinyl alcohol) nanocomposites with different clays: pristine clays and organoclays. J Appl Polym Sci. 2003;90:3208–14.

    Article  CAS  Google Scholar 

  28. Peng Z, Kong LX, Li SD. Study on thermooxidative degradation of poly(vinyl alcohol)/silica nanocomposite prepared with SAM technique. J Metastable Nanocryst Mater. 2005;23:375.

    Article  CAS  Google Scholar 

  29. Qin H, Zhang S, Zhao C, Yang M. Zero-order kinetics of the thermal degradation of polypropylene/clay nanocomposites. J Polym Sci B. 2005;43:3713–9.

    Article  CAS  Google Scholar 

  30. Kumar S, Jog JP, Natarajan U. Preparation and characterization of poly(methylmethacrylate)–clay nanocomposites via melt intercalation: the effect of organoclay on the structure and thermal properties. J Appl Polym Sci. 2003;89:1186–94.

    Article  CAS  Google Scholar 

  31. Lepoittevin B, Pantoustier N, Devalckenaere M, Alexandre M, Kubies D, Calberg C, Jerome R, Dubois P. Poly(epsiloncaprolactone)/clay nanocomposites by in situ intercalative polymerization catalyzed by dibutyltin dimethoxide. Macromolecules. 2002;35(22):8385–90.

    Article  CAS  Google Scholar 

  32. Leszczyńska A, Njuguna J, Pielichowski K, Banerjee JR. Polymer/montmorillonite nanocomposites with improved thermal properties. Part I: factors influencing thermal stability and mechanisms of thermal stability improvement. Therm Acta. 2007;453(2):75–96.

    Article  Google Scholar 

  33. Leszczyńska A, Njuguna J, Pielichowski K, Banerjee JR. Polymer/montmorillonite nanocomposites with improved thermal properties: part II. Thermal stability of montmorillonite nanocomposites based on different polymeric matrixes. Therm Acta. 2007;454:1–22.

    Article  Google Scholar 

  34. Peng Z, Kong LX, Li S-D. Thermal properties and morphology of a poly(vinyl alcohol)/silica nanocomposite prepared with a self-assembled monolayer technique. J Appl Polym Sci. 2005;96:1436–42.

    Article  CAS  Google Scholar 

  35. Gilman JW, VanderHart DL, Kashiwagi T. Thermal decomposition chemistry of poly(vinyl alcohol) char characterization and reactions with bismaleimides, Chap. 11. In: Fire and polymers II: materials and test for hazard prevention. Symposium Series, Vol. 599, August 21–26. Washington DC: American Chemical Society; 1994. p. 161–185.

  36. Chen Y, Cao X, Chang PR, Huneault MA. Comparative study on the films of poly(vinyl alcohol)/pea starch nanocrystals and poly(vinyl alcohol)/native pea starch. Carbohydr Polym. 2008;73:8–17.

    Article  CAS  Google Scholar 

  37. Zhang X, Golding J, Burger I. Thermal decomposition chemistry of starch studied by 13C high resolution solid-state NMR spectroscopy. Polymer. 2002;43(22):5791–6.

    Article  CAS  Google Scholar 

  38. Mano JF, Koniarova D, Reis RL. Thermal properties of thermoplastic starch/synthetic polymer blends with potential biomedical applicability. J Mater Sci Mater Med. 2003;14:127–35.

    Article  CAS  Google Scholar 

  39. Bryce DJ, Greenwood CT. The thermal degradation of starch part III. The formation of decomposition products from starch and related materials at temperatures between 175 °C and 400 °C. Die Starke. 1963;15(10):359–63.

    Article  CAS  Google Scholar 

  40. Smith BC. Fundamentals of Fourier transform infrared spectroscopy. Boca Raton: CRC; 1996. p. 74–83.

    Google Scholar 

  41. Pascu M-C, Rusu V, Vasile C. Applications of the IR spectrometry in medicine and pharmacy. Iasi: Technopress; 2003. p. 422–9.

    Google Scholar 

  42. Gilman JW, Kashiwagi T, Vander Hart DL. Thermal decomposition chemistry of poly(vinyl alcohol). Char characterization and reactions with bismaleimides. In: Fire and polymers II: materials and test for hazard prevention. ACD Symposium Series, Vol. 599. Washington, DC: American Chemical Society; 1994.

  43. Peng Z, Kong LX. A thermal degradation mechanism of polyvinyl alcohol/silica nanocomposites. Polym Degrad Stab. 2007;92:1061–71.

    Article  CAS  Google Scholar 

  44. Liu X, Yu L, Liu H, Chen L, Li L. In situ thermal decomposition of starch with constant moisture in a sealed system. Polym Degrad Stab. 2008;93(1):260–2.

    Article  CAS  Google Scholar 

  45. Wojciech C, Tomasik P. Starch radicals. Part I. Thermolysis of plain starch. Carbohydr Polym. 1996;31(4):205–10.

    Article  Google Scholar 

  46. http://webbook.nist.gov/chemistry/. http://www.chemistry.ccsu.edu/glagovich/teaching/316/ms%20(old)/ms.html.

  47. Periadurai T, Vijayakumar CT, Balasubramanianv M. Thermal decomposition behavior of clay–phenolic nanocomposite prepared by in situ polymerization. Advanced materials nanotechnology particles, films and composites chapter 5: composite materials nanotechnology. 2011. p. 554–557.

  48. Zhu J, Morgan AB, Lamelas FJ, Wilkie CA. Fire properties of polystyrene-clay nanocomposites. Chem Mater. 2001;13:3774.

    Article  CAS  Google Scholar 

  49. Kotsilkova R, Petkova V, Pelovski Y. Thermal analysis of polymer–silicate nanocomposites. J Therm Anal Calorim. 2001;64:591–8.

    Article  CAS  Google Scholar 

  50. Alexandre M, Dubois P. Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater Sci Eng, R. 2000;28:1–63.

    Article  Google Scholar 

  51. Bourbigot S, Le Bras M, Dąbrowski F, Gilman JW, Kashiwagi T. PA-6 clay nanocomposite hybrid as char forming agent in intumescent formulations. Fire Mater. 2000;24:201–8.

    Article  CAS  Google Scholar 

  52. Zhu J, Wilkie CA. Thermal and fire studies on polystyrene–clay nanocomposites. Polym Int. 2000;49:1158–63.

    Article  CAS  Google Scholar 

  53. Gilman JW, Jackson CL, Morgan AB, Harris R Jr, Manias E, Giannelis EP. Propylene and polystyrene nanocomposites. Chem Mater. 2000;12:1866–73.

    Article  CAS  Google Scholar 

  54. Agag T, Takeichi T. Polybenzoxazine–montmorillonite hybrid nanocomposites: synthesis and characterization. Polymer. 2000;41:7083–90.

    Article  CAS  Google Scholar 

  55. Levchik SV, Wilkie CA. In: Grand AF, Wilkie CA, editors. Fire retardancy of polymeric materials. New York: Marcel Dekker; 2000. p. 171–215.

  56. Zanetti M, Bracco P, Costa L. Thermal degradation behavior of PE/clay nanocomposites. Polym Degrad Stab. 2004;85:657–65.

    Article  CAS  Google Scholar 

  57. Jang BN, Wilkie CA. The thermal degradation of polystyrene nanocomposite. Polymer. 2005;46(9):3264–3274, 2933–2942, 46(23):9702–9713; 10678–10687.

    Google Scholar 

Download references

Acknowledgements

We are grateful for the support received from COST FA0904 action and Marie Curie FP7 program grant BIOFUEL-PIRSES GA-2009-247550.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cornelia Vasile.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nistor, MT., Vasile, C. Influence of the nanoparticle type on the thermal decomposition of the green starch/poly(vinyl alcohol)/montmorillonite nanocomposites. J Therm Anal Calorim 111, 1903–1919 (2013). https://doi.org/10.1007/s10973-012-2731-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-012-2731-6

Keywords

Navigation