Skip to main content
Log in

Thermal analysis and health safety

Thermoanalytical characterization of hardwood softwood dust

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Hardwood dust is a human carcinogen; upon inhalation, it can cause sinonasal adenocarcinoma. Softwood, on the other hand, is only suspected of carcinogenic properties. However, the toxicology-based recommended exposure limits for hardwood and softwood dust in working environments have been derived identically. While it is very simple to distinguish the wood by morphological evaluations, the wood dust produced in working activities does not allow differentiation. Thermal analysis, especially thermogravimetry, was applied to evaluate the different characteristic thermal profile of standard hardwood and softwood dusts. The different TG and DTG traces allow to propose thermogravimetry as a new tool to distinguish and quantify the different dust origin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. IARC. Wood dust. IARC Monogr Eval Carcinog Risks Hum. 1995;62:35–215.

    Google Scholar 

  2. Mazzoli A, Favoni O. Particle size, size distribution and morphological evaluation of airborne dust particles of diverse woods by scanning electron microscopy and image processing program. Powder Technol. 2012;225:65–71.

    Article  CAS  Google Scholar 

  3. Bornholdt J, Saber AT, Sharma AK, Savolainen K, Vogel U, Wallin H. Inflammatory response and genotoxicity of seven wood dusts in the human epithelial cell line A549. Mutat Res. 2007;632:78–488.

    Article  CAS  Google Scholar 

  4. Vinzents PS, Schlünssen V, Feveile H, Schaumburg I. Variations in exposure to inhalable wood dust in the Danish furniture industry. Within- and between-worker and factory components estimated from passive dust sampling. Ann Occup Hyg. 2001;45:603–8.

    CAS  Google Scholar 

  5. Thorpe A, Brown RC. Factors influencing the production of dust during the sanding of wood. J Aerosol Sci. 1992;23:237–40.

    Article  Google Scholar 

  6. Schlünssen V, Vinzents PS, Mikkelsen AB, Schaumburg I. Wood dust exposure in the Danish furniture industry using conventional and passive monitors. Ann Occup Hyg. 2001;45:157–64.

    Google Scholar 

  7. Pylkkänen L, Stockmann-Juvala H, Alenius H, Husgafvel-Pursiainen K, Savolainen K. Wood dusts induce the production of reactive oxygen species and caspase-3 activity in human bronchial epithelial cells. Toxicology. 2009;262:265–70.

    Article  Google Scholar 

  8. Pérez-Escuredo J, García Martínez J, Vivanco B, Álvarez Marcos C, Suárez C, Llorente JL, Hermsen MA. Wood dust-related mutational profile of TP53 in intestinal-type sinonasal adenocarcinoma. Hum Pathol. 2012. doi:10.1016/j.humpath.2012.01.016.

  9. Meszaros E, Jakab E, Varhegyi G, Szepesvary P, Marosvolgyi B. Comparative study of the thermal behavior of wood and bark of young shoots obtained from an energy plantation. J Anal Appl Pyrolysis. 2004;72:317–28.

    Article  CAS  Google Scholar 

  10. Jakab E, Faix O, Till F. Thermal decomposition of milled wood lignins studied by thermogravimetry/mass spectrometry. J Anal Appl Pyrolysis. 1997;40:171–86.

    Article  Google Scholar 

  11. Zeriouh A, Belkbir L. Dilatometry analysis of Moroccan acacia wood under a nitrogen atmosphere. Thermochim Acta. 1996;287:293–8.

    Article  CAS  Google Scholar 

  12. Vecchio S, Luciano G, Franceschi E. Explorative kinetic study on the thermal degradation of five wood species for applications in the archaeological field. Ann Chim. 2006;96:715–25.

    Article  CAS  Google Scholar 

  13. Materazzi S, Vecchio S, Wo LW, De Angelis Curtis S. TG–MS and TG–FTIR studies of imidazole-substituted coordination compounds: Co(II) and Ni(II)-complexes of bis(1-methylimidazol-2-yl)ketone. Thermochim Acta. 2012;543:183–7.

    Article  CAS  Google Scholar 

  14. Materazzi S, Kurdziel K, Tentolini U, Bacaloni A, Aquili S. Thermal stability and decomposition mechanism of 1-allylimidazole coordination compounds: a TG–FTIR study of Co(II), Ni(II) and Cu(II) hexacoordinate complexes. Thermochim Acta. 2003;395:133–7.

    Article  CAS  Google Scholar 

  15. Materazzi S, D’Ascenzo G, Aquili S, Kadish KM, Bear JL. Thermoanalytical characterization of solid-state Co(II)–Ni(II)- and Cu(II)-4(5)-aminoimidazole-5(4)-carboxamide complexes. Thermochim Acta. 2003;397:129–34.

    Article  CAS  Google Scholar 

  16. Materazzi S, Aquili S, De Angelis Curtis S, Bianchetti C, D’Ascenzo G, Kadish KM, Bear JL. The decomposition mechanism of new solid-state 4(5)-aminoimidazole-5(4)-carboxamide coordination compounds. Thermochim Acta. 2004;409:145–50.

    Article  CAS  Google Scholar 

  17. Materazzi S, Aquili S, De Angelis Curtis S, Vecchio S, Kurdziel K, Sagone F. Biomimetic complexes: thermal stability kinetic study and decomposition mechanism of Co(II)-, Ni(II)- and Cu(II)-4(5)-hydroxymethyl-5(4)-methylimidazole complexes. Thermochim Acta. 2004;421:19–24.

    Article  CAS  Google Scholar 

  18. Materazzi S, Aquili S, Kurdziel K, Vecchio S. Biomimetic polyimidazole complexes: a thermoanalytical study of Co(II)–NI(II)- and Cu(II)-bis(imidazol-2-yl)methane complexes. Thermochim Acta. 2007;457:7–10.

    Article  CAS  Google Scholar 

  19. De Angelis Curtis S, Kurdziel K, Materazzi S, Vecchio S. Crystal structure and thermoanalytical study of a manganese(II) complex with 1-allylimidazole. J Therm Anal Calorim. 2008;92:109–14.

    Article  Google Scholar 

  20. Materazzi S, Gentili A, Curini R. Application of evolved gas analysis. Part 1: EGA by infrared spectroscopy. Talanta. 2006;68:489–96.

    Article  CAS  Google Scholar 

  21. Materazzi S, Vecchio S. Evolved gas analysis by infrared spectroscopy. Appl Spectrosc Rev. 2010;45:241–73.

    Article  Google Scholar 

  22. Materazzi S, Gentili A, Curini R. Application of evolved gas analysis. Part2: EGA by mass spectrometry. Talanta. 2006;69:781–94.

    Article  CAS  Google Scholar 

  23. Materazzi S, Vecchio S. Evolved gas analysis by mass spectrometry. Appl Spectrosc Rev. 2011;46:261–340.

    Article  Google Scholar 

  24. Materazzi S, Vecchio S, Wo LW, De Angelis Curtis S. Thermoanalytical studies of imidazole-substituted coordination compounds. Mn(II) complexes of bis(1-methylimidazol-2yl)ketone. J Therm Anal Calorim. 2011;103:59–64.

    Article  CAS  Google Scholar 

  25. Materazzi S, Curini R. The coupling of mass spectrometry with thermoanalytical instruments: applications of evolved gas analysis. Appl Spectrosc Rev. 2001;36:169–80.

    Article  CAS  Google Scholar 

  26. Materazzi S, Curini R. On-line evolved gas analysis by infrared spectroscopy coupled to thermoanalytical instruments. Appl Spectrosc Rev. 2001;36:1–9.

    Article  CAS  Google Scholar 

  27. Materazzi S. Mass spectrometry coupled to thermogravimetry (TG-MS) for evolved gas characterization: a review. Appl Spectrosc Rev. 1998;33:189–97.

    Article  CAS  Google Scholar 

  28. Materazzi S. Thermogravimetry–infrared spectroscopy (TG–FTIR) coupled analysis. Appl Spectrosc Rev. 1997;32:385–97.

    Article  CAS  Google Scholar 

  29. Perrino C, Canepari S, Materazzi S. Thermal stability of inorganic and organic compounds in atmospheric particulate matter. Atmos Environ. 2012;54:36–43.

    Article  CAS  Google Scholar 

  30. Vecchio S, Di Rocco R, Ferragina C, Materazzi S. Thermal and kinetic study of dehydration and decomposition processes for copper complex intercalated in γ-zirconium and γ-titanium phosphates. Thermochim Acta. 2005;435:181–7.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Materazzi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Materazzi, S., Vecchio, S. & De Angelis Curtis, S. Thermal analysis and health safety. J Therm Anal Calorim 112, 529–533 (2013). https://doi.org/10.1007/s10973-012-2762-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-012-2762-z

Keywords

Navigation