Skip to main content
Log in

Thermal studies of chitin–chitosan derivatives

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

New poly(azo) amino-chitosan compounds were obtained from the azo coupling reaction of N-benzyl chitosan and diazonium salts. The thermal behavior of these compounds was studied by thermogravimetric analysis (TG), differential thermogravimetric analysis (DTG), TG coupled with a Fourier-transform infrared, and differential scanning calorimetry (DSC). TG/DTG curves of chitin–chitosan polymer showed two thermal events attributed to water loss and decomposition of the polysaccharide after cross-linking reactions. Thermal analysis of the poly(azo) amino-chitosan compounds showed that the decomposition temperatures decreased when compared to the starting chitin–chitosan and N-benzyl chitosan. DSC results showed an agreement with the TG/DTG analyses. Thermal behavior of poly(azo) amino-chitosans suggest that these compounds could be considered as potential thermal sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kurita K. Chitin and chitosan: functional biopolymers from marine crustaceans. Marine Biotechnol. 2006;8:203–26.

    Article  CAS  Google Scholar 

  2. Riva R, Ragelle H, des Rieux A, Duhem N, Jerome C, Preat V. Chitosan and chitosan derivatives in drug delivery and tissue engineering. In: Jayakumar RPMMRAA, editor. Chitosan for biomaterials II. Advances in polymer science, 2011. p. 19–44.

  3. Devlieghere F, Vermeulen A, Debevere J. Chitosan: antimicrobial activity, interactions with food components and applicability as a coating on fruit and vegetables. Food Microbiol. 2004;21:703–14.

    Article  CAS  Google Scholar 

  4. Hussein MHM, El-Hady MF, Sayed WM, Hefni H. Preparation of some chitosan heavy metal complexes and study of its properties. Polym Sci Ser A. 2012;54:113–24.

    Article  CAS  Google Scholar 

  5. Landl M, Šimon P, Breza M. Synthesis and spectra of tris(4-dimethylaminophenyl)divinylenes. Dyes Pigm. 1999;40:43–51.

    Article  CAS  Google Scholar 

  6. Gopalakrishnan S, Nevaditha NT, Mythili CV. Antibacterial activity of azo compounds synthesized from the natural renewable source, cardanol. J Chem Pharm Res. 2011;3:490–7.

    CAS  Google Scholar 

  7. Manickasundaram S, Kannan P, Hassan QMA, Palanisamy PK. Azo dye based poly(alkyloxymethacrylate)s and their spacer effect on optical data storage. J Mater Sci. 2008;19:1045–53.

    CAS  Google Scholar 

  8. Hong Y-G, Gu J-D. Physiology and biochemistry of reduction of azo compounds by Shewanella strains relevant to electron transport chain. Appl Microbiol Biotechnol. 2010;88:637–43.

    Article  CAS  Google Scholar 

  9. Khalid MN, Agnely F, Yagoubi N, Grossiord JL, Couarraze G. Water state characterization, swelling behavior, thermal and mechanical properties of chitosan based networks. Eur J Pharm Sci. 2002;15:425–32.

    Article  CAS  Google Scholar 

  10. Cardenas G, Bernal L, Tagle LH. Thermogravimetric studies of chitosan derivatives. Thermochim Acta. 1992;195:33–8.

    Article  Google Scholar 

  11. VIII Congresso Brasileiro de Análise Térmica e Calorimetria. III Congresso Pan-Americano de Análise Térmica e Calorimetria. 01–04 April, 2012, Campos do Jordão, São Paulo, Brazil.

  12. Brugnerotto J, Lizardi J, Goycoolea FM, Arguelles-Monal W, Desbrieres J, Rinaudo M. An infrared investigation in relation with chitin and chitosan characterization. Polymer. 2001;42:3569–80.

    Article  CAS  Google Scholar 

  13. Borch RF, Bernstei Md, Durst HD. Cyanohydridoborate anion as a selective reducing agent. J Am Chem Soc. 1971;93:2897–904.

    Article  CAS  Google Scholar 

  14. Langhals H. Color chemistry. Synthesis, properties and applications of organic dyes and pigments, 3rd revised edition. Heinrich Zollinger. Angewandte Chemie International Edition. 2004;43:5291–2.

  15. Kim S. Chitin, chitosan, oligosaccharides and their derivatives, biological activities and applications. USA: CRC Press; 2011. p. 149–66.

    Google Scholar 

  16. Zawadzki J, Kaczmarek H. Thermal treatment of chitosan in various conditions. Carbohydr Polym. 2010;80:394–400.

    Article  CAS  Google Scholar 

  17. López FA, Mercê ALR, Alguacil FJ, López-Delgado A. A kinetic study on the thermal behaviour of chitosan. J Therm Anal Calorim. 2008;91:633–9.

    Article  Google Scholar 

  18. Tang WJ, Wang CX, Donghua C. Kinetic studies on the pyrolysis of chitin and chitosan. Polym Degrad Stab. 2005;87:389–94.

    Article  CAS  Google Scholar 

  19. Pawlak A, Mucha M. Thermogravimetric and FTIR studies of chitosan blends. Thermochim Acta. 2003;409:95–7.

    Article  Google Scholar 

  20. Sajomsang W, Tantayanon S, Tangpasuthadol V, Thatte M, William H, Daly HW. Synthesis and characterization of N-aryl chitosan derivatives. Int J Biol Macromol. 2008;43:79–87.

    Article  CAS  Google Scholar 

  21. Zeng L, Qin C, Wang L, Li W. Volatile compounds formed from the pyrolysis of chitosan. Carbohydr Polym. 2011;83:1553–7.

    Article  CAS  Google Scholar 

  22. Koll P, Borchers G, Metzger JO. Thermal degradation of chitin and cellulose. J Anal Appl Pyrol. 1991;19:119–29.

    Article  Google Scholar 

  23. Guinesi LS, Cavalheiro ETG. The use of DSC curves to determine the acetylation degree of chitin/chitosan samples. Thermochim Acta. 2006;444:128–33.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully thank Fundação de Apoio a Pesquisa do Estado de São Paulo (FAPESP), Programa de Pós-graduação em Ciência e Tecnologia de Materiais (POSMAT), and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for financial support and post-graduation fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo René Pérez González.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pereira, F.S., da Silva Agostini, D.L., Job, A.E. et al. Thermal studies of chitin–chitosan derivatives. J Therm Anal Calorim 114, 321–327 (2013). https://doi.org/10.1007/s10973-012-2835-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-012-2835-z

Keywords

Navigation