Skip to main content
Log in

Multi-walled carbon nanotubes coated by multi-layer silica for improving thermal conductivity of polymer composites

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Silica has been non-covalently coated on multi-walled carbon nanotubes (MWCNTs) using the sol–gel chemistry, where tetraethoxy silane (TEOS) was used to form an inorganic silica layer immediately next to surface of MWCNTs and octyl triethoxy silane was coated over the TEOS. Transmission electron microscopy (TEM) measurements show that the diameter of MWCNTs increases with increasing the number of coating layer, indicating that the silica has been coated on MWCNTs. Quantitative analysis from thermogravimetric analysis (TG) also indicates that the inorganic and organic silica has been successfully coated on MWCNTs. Further, quantitative analysis found that the amount of silica measured by TG agrees well with the increase of thickness of coated MWCNTs obtained from TEM, indicating that little or no free silica exists in the system. The thermal conductivity of epoxy/MWCNTs composite was studied and the results show that the thermal conductivity of the composite is improved by coating MWCNTs in this manner and increases with increasing the number of coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Berber S, Kwon YK, Tomanek D. Unusually high thermal conductivity of carbon nanotubes. Phys Rev Lett. 2000;84:4613–6.

    Article  CAS  Google Scholar 

  2. Kim P, Shi L, Majumdar A, McEuen PL. Thermal transport measurements of individual multi-walled nanotubes. Phys Rev Lett. 2001;87:215502-1–4.

    Google Scholar 

  3. Yang Y. Thermal conductivity. In: Mark JE, editor. Physical properties of polymer handbook. Chap. 10. New York: Springer. 1996.

  4. Biercuk MJ, Llaguno MC, Radosavljevic M, Hyun JK, Johnson AT, Fischer JE. Carbon nanotube composites for thermal management. Appl Phys Lett. 2002;80:2767–9.

    Article  CAS  Google Scholar 

  5. Cai D, Song M. Latex technology as a simple route to improve the thermal conductivity of a carbon nanotube/polymer composite. Carbon. 2008;46:2107–12.

    Article  CAS  Google Scholar 

  6. Evseeva LE, Tanaeva SA. Thermal conductivity of micro-and nanostructural epoxy composites at low temperatures. Mech Compos Mater. 2008;44:487–92.

    Article  CAS  Google Scholar 

  7. Jakubinek MB, White MA, Mu M, Winey KI. Temperature dependence of thermal conductivity enhancement in single-walled carbon nanotube/polystyrene composites. Appl Phys Lett. 2010;96:083105-1–3.

    Article  Google Scholar 

  8. Moisala A, Li Q, Kinloch IA, Windle AH. Thermal and electrical conductivity of single-and multi-walled carbon nanotube-epoxy composites. Compos Sci Technol. 2006;66:1285–8.

    Article  CAS  Google Scholar 

  9. Li CC, Lu CL, Lin YT, Wei BY, Hsu WK. Creation of interfacial phonons by carbon nanotube–polymer coupling. Phys Chem Chem Phys. 2009;11:6034–7.

    Article  CAS  Google Scholar 

  10. Yang Y, Gupta MC, Zalameda JN, Winfree WP. Dispersion behaviour, thermal and electrical conductivities of carbon nanotube-polystyrene nanocomposites. Micro Nano Lett. 2008;3:35–40.

    Article  CAS  Google Scholar 

  11. Peters JE, Papavassiliou DV, Grady BP. Unique thermal conductivity behavior of single-walled carbon nanotube-polystyrene composites. Macromolecules. 2008;41:7274–7.

    Article  CAS  Google Scholar 

  12. Duong HM, Papavassiliou DV, Lee LL, Mullen KJ. Random walks in nanotube composites: improved algorithms and the role of thermal boundary resistance. Appl Phys Lett. 2005;87:013101-1–3.

    Article  Google Scholar 

  13. Grady BP. Carbon nanotube-polymer composites: manufacture, properties, and applications. New York: Wiley; 2011.

    Google Scholar 

  14. Swartz ET, Pohl RO. Thermal boundary resistance. Rev Mod Phys. 1989;61:605–68.

    Article  Google Scholar 

  15. Shenogin S, Xue LP, Ozisik R, Keblinski P, Cahill DG. Role of thermal boundary resistance on the heat flow in carbon-nanotube composites. J Appl Phys. 2004;95:8136–44.

    Article  CAS  Google Scholar 

  16. Bryning MB, Milkie DE, Islam MF, Kikkawa JM, Yodh AG. Thermal conductivity and interfacial resistance in single-wall carbon nanotube epoxy composites. Appl Phys Lett. 2005;87:161909-1–3.

    Article  Google Scholar 

  17. Brostow W. Mechanical properties. In: Mark JE, editor. Physical properties of polymer handbook. Chap. 24. New York: Springer. 1996.

  18. Guo JX, Simon SL. Pressure–volume–temperature behavior of two polycyanurate networks. J Polym Sci B. 2010;48:2509–17.

    Article  CAS  Google Scholar 

  19. Guo JX, Grassia L, Simon SL. Bulk and shear rheology of a symmetric three-arm star polystyrene. J Polym Sci B. 2012;50:1233–44.

    Article  CAS  Google Scholar 

  20. Treacy MMJ, Ebbesen TW, Gibson JM. Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature. 1996;381:678–80.

    Article  CAS  Google Scholar 

  21. Every AG, Tzou Y, Hasselman DPH, Raj R. The effect of particle size on the thermal conductivity of ZnS/diamond composites. Acta Metall Mater. 1992;40:123–9.

    Article  CAS  Google Scholar 

  22. Hong J, Lee J, Hong CK, Shim SE. Improvement of thermal conductivity of poly(dimethyl siloxane) using silica-coated multi-walled carbon nanotube. J Therm Anal Calorim. 2010;101:297–302.

    Article  CAS  Google Scholar 

  23. Cui W, Du FP, Zhao JC, Zhang W, Yang YK, Xie XL, Mai YW. Improving thermal conductivity while retaining high electrical resistivity of epoxy composites by incorporating silica-coated multi-walled carbon nanotubes. Carbon. 2011;49:495–500.

    Article  CAS  Google Scholar 

  24. Fine ME, Duyne HV, Kenney NT. Low-temperature internal friction and elasticity effects in vitreous silica. J Appl Phys. 1954;25:402–5.

    Article  CAS  Google Scholar 

  25. Brinker CJ, Scherer GW. Sol-gel science: the physics and chemistry of sol-gel processing. Elsevier: Academic Press; 1990.

    Google Scholar 

  26. Wen J, Wilkes GL. Organic/inorganic hybrid network materials by the sol-gel approach. Chem Mater. 1996;8:1667–81.

    Article  CAS  Google Scholar 

  27. Salon MCB, Bayle PA, Abdelmouleh M, Boufi S, Belgacem MN. Kinetics of hydrolysis and self condensation reactions of silanes by NMR spectroscopy. Colloids Surf A. 2008;312:83–91.

    Article  Google Scholar 

  28. Cahill DG. Thermal conductivity measurement from 30 to 750 K: the 3ω method. Rev Sci Instrum. 1990;61:802–8.

    Article  CAS  Google Scholar 

  29. Olson BW, Graham S, Chen K. A practical extension of the 3ω method to multilayer structures. Rev Sci Instrum. 2005;76:053901-1–7.

    Article  Google Scholar 

  30. Fina A, Tabuani D, Carniato F, Frache A, Boccaleri E, Camino G. Polyhedral oligomeric silsesquioxanes (POSS) thermal degradation. Thermochim Acta. 2006;440:36–42.

    Article  CAS  Google Scholar 

  31. Xu YS, Ray G, Abdel-Magid B. Thermal behavior of single-walled carbon nanotube polymer–matrix composites. Compos A. 2006;37:114–21.

    Article  CAS  Google Scholar 

  32. Kashiwagi T, Grulke E, Hilding J, Groth K, Harris R, Butler K, Shields J, Kharchenko S, Douglas J. Thermal and flammability properties of polypropylene/carbon nanotube nanocomposites. Polymer. 2004;45:4227–39.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the funding from the Department of Energy (Grant ER64239 0012293) and the Air Force Office of Scientific Research (Grant# 9550-10-1-0031 administered by Dr. Joycelyn Harrison). The TG was purchased as part of the National Science Foundation Grant No. 0923247. We would also like to thank the Carbon Nanotube Technology Center (CaNTeC) for its support. In addition, help with TG measurements from Dr. Rolf Jentoft and help with TEM measurements from Gregory Stout are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian P. Grady.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, J., Saha, P., Liang, J. et al. Multi-walled carbon nanotubes coated by multi-layer silica for improving thermal conductivity of polymer composites. J Therm Anal Calorim 113, 467–474 (2013). https://doi.org/10.1007/s10973-012-2902-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-012-2902-5

Keywords

Navigation