Skip to main content
Log in

Synthesis, characterization, and dynamic DSC curing kinetics of novel epoxy resin of 2,4,6-tris(4-hydroxyphenyl)-1-3-5-triazine

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

2,4,6-Tris(4-hydroxyphenyl)-1,3,5-triazine was synthesized by cyclotrimerization of 4-cyanophenol using trifluromethanesulphonic acid as a catalyst at room temperature. 2,4,6-Tris(4-hydroxyphenyl)-1,3,5-triazine was epoxidized using alkali as a catalyst at 60 °C for 1 h. Epoxy resin was cured by DSC at multiple heating rates under nitrogen atmosphere by using 20 % of 4,4′-diamino diphenylsulphone, 4,4′-diaminodiphenylether, and 4,4′-diaminodiphenylcyclohexane as hardeners. Cured and uncured reins were also analyzed by TG analysis. Kinetic parameters were determined and discussed in light of nature of curing agents. Thermal decomposition behavior of the samples is also discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Murayam S. In: Phenol resin. Tokyo: Nitsukan Kogyo Shinbunsha; 1961. p. 49.

  2. Carrasco F, Pagès P, Lacorte T, Briceño K. Fourier transform IR and differential scanning calorimetry study of curing of trifunctional amino-epoxy resin. J Appl Polym Sci. 2005;98(4):1524–35.

    Article  CAS  Google Scholar 

  3. Mustata F, Bicu F. Multifunctional epoxy resins: synthesis and characterization. J Appl Polym Sci. 2000;77:2430–6.

    Article  CAS  Google Scholar 

  4. Becker O, Cheng YB, Varley JR, Simon GP. Layered silicate nanocomposites based on various high-functionality epoxy resins: The influence of cure temperature on morphology, mechanical properties, and free volume. Macromolecules. 2003;36:1616–25.

    Article  CAS  Google Scholar 

  5. Xu L, Fu JH, Schlup JR. In situ near-infrared spectroscopy investigation of epoxy resin-aromatic amine cure mechanism. J Am Chem Soc. 1994;116:2821–6.

    Article  CAS  Google Scholar 

  6. Montserrat SJ. Physical aging studies in epoxy resins I. Kinetics of enthalpy relaxation process in a fully cured epoxy resin. J Polym Sci B Polym Phys. 1994;32:509–22.

    Article  CAS  Google Scholar 

  7. Opaliki M, Kenny JM, Nicolais L. Cure kinetics of neat and carbon-fiber-reinforced TGDDM/DDS epoxy systems. J Appl Polym Sci. 1996;61:1025–37.

    Article  Google Scholar 

  8. Rosu D, Mustata F, Cascaval CN. Investigation of the curing reactions of some multifunctional epoxy resins using differential scanning calorimetry. Thermochim Acta. 2001;370:105–10.

    Article  CAS  Google Scholar 

  9. Frigione M, Calo E. Influence of hyperbranched aliphatic polyester on the cure kinetics of a trifunctional epoxy resin. J Appl Polym Sci. 2007;107:1744–58.

    Article  Google Scholar 

  10. Kandola BK, Biswas B, Price D, Horrocks AR. Studies on the effect of different levels of toughener and flame retardants on thermal stability of epoxy resins. Polym Degrad Stab. 2009;95:144–52.

    Article  Google Scholar 

  11. Patel SR, Patel VS, Patel RG. Studies on curing kinetics and thermal stability of epoxy resin N,N′,N′′,N′′′-tetraglycidyl-1,1-bis[(4-amino-3-methyl)-phenyl]cyclohexane using various amine curing agents. Thermochim Acta. 1991;182:319–27.

    Article  CAS  Google Scholar 

  12. Maity T, Samanta BC, Dalai S, Banthia AK. Curing study of epoxy resin by new aromatic amine functional curing agents along with mechanical and thermal evaluation. Mater Sci Eng, A. 2007;464:38–46.

    Article  Google Scholar 

  13. Ghaemy M, Barghamadi M, Behmadi H. Studies of cure kinetics and chemical resistance of the cured products of DGEBA with aromatic diamines. Iran Polym J. 2006;15:375–83.

    CAS  Google Scholar 

  14. Ghaemy M, Rahpaima G, Behmadi H. Effect of triphenylphosphine on the cure reaction and thermal stability of diglycidyl ether of bisphenol-A based epoxy resin. Iran Polym J. 2008;17:875–85.

    CAS  Google Scholar 

  15. Palaniappan S, Sreedhar B, Nair SM. Polyaniline as a curing agent for epoxy resin: cure kinetics by differential scanning calorimetry. Macromol Chem Phys. 2001;202:1227–31.

    Article  CAS  Google Scholar 

  16. Lu MG, Shim MJ, Kim SW. Effect of filler on cure behavior of an epoxy system: cure modeling. Polym Eng Sci. 1999;39:274–85.

    Article  CAS  Google Scholar 

  17. Zvetkov VL, Comparative DSC. kinetics of the reaction of DGEBA with aromatic diamines. I: non-isothermal kinetic study of the reaction of DGEBA with m-phenylenediamine. Polymer. 2001;42:6687–97.

    Article  CAS  Google Scholar 

  18. Barghamadi M, Ghaemy M, Alizadeh R. Non-isothermal cure kinetics of diglycidyl ether of bisphenol-A with various aromatic diamines. Iran Polym J. 2009;18:431–43.

    CAS  Google Scholar 

  19. Sbirrazzuoli N, Vyazovkin S. Learning about epoxy cure mechanisms from isoconversional analysis of DSC data. Thermochim Acta. 2002;388:289–98.

    Article  CAS  Google Scholar 

  20. Sbirrazzuoli N, Vincent L, Bouillard J, Elegant L. Isothermal and non-isothermal kinetics when mechanistic information available. J Therm Anal Calorim. 1999;56:783–92.

    Article  CAS  Google Scholar 

  21. Sun L, Pang SS, Sterling AM, Negulescu II, Stubblefield MA. Dynamic modeling of curing process of epoxy prepreg. J Appl Polym Sci. 2002;86:1911–23.

    Article  CAS  Google Scholar 

  22. Rosu D, Cascaval CN, Mustata F, Ciobanu C. Cure kinetics of epoxy resins studied by non-isothermal DSC data. Thermochim Acta. 2002;383:119–27.

    Article  CAS  Google Scholar 

  23. Rosu D, Mititelu A, Cascaval CN. Cure kinetics of a liquid-crystalline epoxy resin studied by non-isothermal data. Polym Test. 2004;23:209–15.

    Article  CAS  Google Scholar 

  24. Montserrat S, Malek J. A kinetic analysis of the curing reaction of an epoxy resin. Thermochim Acta. 1993;228:47–60.

    Article  CAS  Google Scholar 

  25. Kessler MR, White SR. Cure kinetics of the ring-opening metathesis polymerization of dicyclopentadiene. J Polym Sci Polym Chem. 2002;40:2373–83.

    Article  CAS  Google Scholar 

  26. Sbirrazzuoli N, Girault Y, Elegant L. Simulations for evaluation of kinetic methods in differential scanning calorimetry. Part 3—peak maximum evolution methods and isoconversional methods. Thermochim Acta. 1997;293:25–37.

    Article  CAS  Google Scholar 

  27. Opfermann J, Kaisersberger E. An advantageous variant of the Ozawa–Flynn–Wall analysis. Thermochim Acta. 1992;203:167–75.

    Article  CAS  Google Scholar 

  28. He Y. DSC and DEA studies of under fill curing kinetics. Thermochim Acta. 2001;367–368:101–6.

    Article  Google Scholar 

  29. Gangani BJ, Parsania PH. Microwave irradiated and classical syntheses of symmetric double Schiff bases of 1,1′-bis(4-amino phenyl)cyclohexane and their physico-chemical characterization. Spect Lett. 2007;40:97–112.

    Article  CAS  Google Scholar 

  30. Kotha S, Kashinath D, Lopus M, Panda D. Synthesis of nano-sized C3-symmetric 2,4,6-triphenyl-1,3,5-s-triazine and 1,3,5-triphenylbenzene derivatives via the trimerization followed by Suzuki–Miyura cross-coupling or o-alkylation reactions and their biological evaluation. Ind J Chem. 2009;48B:1766–70.

    CAS  Google Scholar 

  31. Greenlee SO. Phenol aldehyde and epoxide resin compositions. 1949. US 2,502,145.

  32. Pielichowski K, Czub P, Pielichowski J. The kinetics of cure of epoxides and related sulphur compounds studied by dynamic DSC. Polymer. 2000;41:4381–8.

    Article  CAS  Google Scholar 

  33. Jubsilp C, Damrongsakkul S, Takeichi T, Rimdusit S. Curing kinetics of arylamine-based polyfunctional benzoxazine resins by dynamic differential scanning calorimetry. Thermochim Acta. 2006;447:131–40.

    Article  CAS  Google Scholar 

  34. Vyazovkin S, Burnham AK, Criado JM, Perez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC kinetics committee recommendations for performing kinetics computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.

    Article  CAS  Google Scholar 

  35. Zhao H, Gao J, Li Y, Shen S. Curing kinetics and thermal property characterization of bisphenol-F epoxy resin and MeTHPA system. J Therm Anal Calorim. 2003;74:227–36.

    Article  CAS  Google Scholar 

  36. Wang YX, Ishida H. Synthesis and properties of new thermoplastic polymers from substituted 3,4-dihydro-2H-1,3-benzoxazines. Macromolecules. 2000;33:2839–47.

    Article  CAS  Google Scholar 

  37. Chen LW, Fu SC, Cho CS. Kinetics of aryl phosphinate anhydride curing of epoxy resin using differential scanning calorimetry. Polym Int. 1998;46:325–30.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are thankful to UGC-SAP and DST-FIST facilities and also Department of Science &Technology-New Delhi for major research grants (SERC Sl. No. 1272, 15-06-2010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. H. Parsania.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghumara, R.Y., Adroja, P.P. & Parsania, P.H. Synthesis, characterization, and dynamic DSC curing kinetics of novel epoxy resin of 2,4,6-tris(4-hydroxyphenyl)-1-3-5-triazine. J Therm Anal Calorim 114, 873–881 (2013). https://doi.org/10.1007/s10973-013-2984-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-013-2984-8

Keywords

Navigation