Skip to main content
Log in

Activation energies and structural changes in carbon nanotubes during different acid treatments

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this work, we studied the effect of acid type in the final properties of CNTs as the resistance to air oxidation; for this, different techniques of characterization were used such as Raman spectroscopy, thermogravimetric analysis, and chemical analysis by ICP-AES. Through Raman spectroscopy, it is possible to monitor the structural changes induced by acids and this is reflected in changing of the activation energies for the different processes determined by thermogravimetric analysis; also by ICP-AES analysis, it was shown that the inorganic material was eliminated efficiently with the acid treatments used in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Iijima S. Helical microtubules of graphitic carbon. Nature. 1991;354(6348):56–8.

    Article  CAS  Google Scholar 

  2. De Jong KP, Geus JW. Carbon nanofibers: catalytic synthesis and applications. Catal Rev. 2000;42(4):481–510.

    Article  Google Scholar 

  3. Sierra G, Barrault J, Batiot-Dupeyrat C, Mondragón F. Production of hydrogen and MWCNTs by methane decomposition over catalysts originated from LaNiO3 perovskite. Catal Today. 2010;149(3–4):365–71.

    Article  Google Scholar 

  4. Cassell AM, Raymakers JA, Kong J, Dai H. Large scale CVD synthesis of single-walled carbon nanotubes. J Phys Chem B. 1999;103(31):6484–92.

    Article  CAS  Google Scholar 

  5. Yah CS, Iyuke SE, Simate GS, Unuabonah EI, Bathgate G, Matthews G, Cluett JD. Continuous synthesis of multiwalled carbon nanotubes from xylene using the swirled floating catalyst chemical vapor deposition technique. J Mater Res. 2011;26(5):640–4.

    Article  CAS  Google Scholar 

  6. Jung NJ, Yeo JG, Jung HG, Kim DG. Korea Institute of Energy Research, S. Korea. Mass production method of high-purity carbon nanotubes KR2012048946A. 2012.

  7. Batiot-Dupeyrat C, Tatibouet J-M, Barrault J, Mondragon F, Gallego JA, Sierra GA. Process for producing hydrogen gas and carbon nanotubes from catalytic decomposition of ethanol. European Community International Patent. PCT/IB200801733. 2009. 20070702.

  8. Harris PJF. Carbon nanotube science. Cambridge: Cambridge University Press; 2009. p. 80–106.

    Book  Google Scholar 

  9. Hou P-X, Liu C, Cheng H-M. Purification of carbon nanotubes. Carbon. 2008;46(15):2003–25.

    Article  CAS  Google Scholar 

  10. Hsieh Y-C, Chou Y-C, Lin C-P, Hsieh T-F, Shu C-M. Thermal analysis of multi-walled carbon nanotubes by Kissinger’s corrected kinetic equation. Aerosol Air Qual Res. 2010;10:212–8.

    CAS  Google Scholar 

  11. Zhang X, Deng C, Xu R, Wang D. Oxidation resistance of multi-walled carbon nanotubes purified with sulfuric and nitric acids. J Mater Sci. 2007;42(19):8377–80.

    Article  CAS  Google Scholar 

  12. Shulitskii B, Tabulina L, Rusal’skaya T, Shaman Y, Komissarov I, Karoza A. Effect of the multistage chemical treatment of carbon nanotubes on their purity and quality of walls. Russ J Phys Chem A. 2012;86(10):1595–601.

    Article  CAS  Google Scholar 

  13. Chou Y-C, Hsieh T-F, Hsieh Y-C, Lin C-P, Shu C-M. Comparisons of MWCNTs and acidified process by HNO3 on thermal stability by DSC and TG-FTIR. J Therm Anal Calorim. 2010;102(2):641–6.

    Article  CAS  Google Scholar 

  14. Chang CW, Chou YC, Tseng JM, Liu MY, Shu CM. Thermal hazard evaluation of carbon nanotubes with sulfuric acid by DSC. J Therm Anal Calorim. 2009;95(2):639–43.

    Article  CAS  Google Scholar 

  15. Gallego J, Sierra G, Mondragon F, Barrault J, Batiot-Dupeyrat C. Synthesis of MWCNTs and hydrogen from ethanol catalytic decomposition over a Ni/La2O3 catalyst produced by the reduction of LaNiO3. Appl Catal A Gen. 2011;397(1–2):73–81.

    Article  CAS  Google Scholar 

  16. Sierra G, Mondragón F, Barrault J, Tatibouët J-M, Batiot-Dupeyrat C. CO2 reforming of CH4 over La–Ni based perovskite precursors. Appl Catal A Gen. 2006;311:164–71.

    Article  Google Scholar 

  17. Batiot-Dupeyrat C, Sierra Gallego GA, Mondragon F, Barrault J, Tatibouët J-M. CO2 reforming of methane over LaNiO3 as precursor material. Catal Today. 2005;107–108:474–80.

    Article  Google Scholar 

  18. Govindaraj A, Rao CNR. Synthesis, growth mechanism and processing of carbon nanotubes. In: Dai L, editor. Carbon nanotechnology. Amsterdam: Elsevier; 2006. p. 15–51.

    Chapter  Google Scholar 

  19. Sierra G, Gallego J, Batiot-Dupeyrat C, Barrault J, Mondragón F. Influence of Pr and Ce in dry methane reforming catalysts produced from La1–xAxNiO3–δ perovskites. Appl Catal A Gen. 2009;369(1–2):97–103.

    Google Scholar 

  20. Ramesh BP, Blau WJ, Tyagi PK, Misra DS, Ali N, Gracio J, Cabral G, Titus E. Thermogravimetric analysis of cobalt-filled carbon nanotubes deposited by chemical vapour deposition. Thin Solid Films. 2006;494(1–2):128–32.

    Article  CAS  Google Scholar 

  21. Musumeci AW, Waclawik ER, Frost RL. A comparative study of single-walled carbon nanotube purification techniques using Raman spectroscopy. Spectrochim Acta A Mol Biomol Spectrosc. 2008;71(1):140–2.

    Article  Google Scholar 

  22. Inoue M, Asai K, Nagayasu Y, Takane K, Iwamoto S, Yagasaki E, Ishii K. Formation of multi-walled carbon nanotubes by Ni-catalyzed decomposition of methane at 600–750 °C. Diam Relat Mater. 2008;17(7–10):1471–5.

    Article  CAS  Google Scholar 

  23. Salernitano E, Giorgi L, Dikonimos Makris T, GiorgiMakris R, Lisi N, Contini V, Falconieri M. Purification of MWCNTs grown on a nanosized unsupported Fe-based powder catalyst. Diam Relat Mater. 2007;16(8):1565–70.

    Article  CAS  Google Scholar 

  24. Ovejero G, Sotelo JL, Romero MD, Rodríguez A, Ocaña MA, Rodríguez G, García J. Multiwalled carbon nanotubes for liquid-phase oxidation. Functionalization, characterization, and catalytic activity. Ind Eng Chem Res. 2006;45(7):2206–12.

    Article  CAS  Google Scholar 

  25. Scheibe B, Borowiak-Palen E, Kalenczuk RJ. Oxidation and reduction of multiwalled carbon nanotubes—preparation and characterization. Mater Charact. 2010;61(2):185–91.

    Article  CAS  Google Scholar 

  26. Musumeci AW, Silva GG, Martens WN, Waclawik ER, Frost RL. Thermal decomposition and electron microscopy studies of single-walled carbon nanotubes. J Therm Anal Calorim. 2007;88:885–91.

    Article  CAS  Google Scholar 

  27. Tan PH, Zhang SL, Yue KT, Huang FM, Shi ZJ, Zhou XH, Yue KT, Gu Z. Comparative Raman study of carbon nanotubes prepared by D.C. arc discharge and catalytic methods. J Raman Spectrosc. 1997;28(5):369–72.

    Article  CAS  Google Scholar 

  28. AGdS Filho, Fagan SB. Funcionalização de nanotubos de carbono. Quim Nova. 2007;30(7):1695–703.

    Article  Google Scholar 

  29. Porro S, Musso S, Vinante M, Vanzetti L, Anderle M, Trotta F, Tagliaferro A. Purification of carbon nanotubes grown by thermal CVD. Physica E. 2007;37(1–2):58–61.

    Article  CAS  Google Scholar 

  30. Li J, Vergne MJ, Mowles ED, Zhong W-H, Hercules DM, Lukehart CM. Surface functionalization and characterization of graphitic carbon nanofibers (GCNFs). Carbon. 2005;43(14):2883–93.

    Article  CAS  Google Scholar 

  31. Kalogirou M, Samaras Z. A thermogravimetic kinetic study of uncatalyzed diesel soot oxidation. J Therm Anal Calorim. 2009;98(1):215–24.

    Article  CAS  Google Scholar 

  32. Osswald S, Havel M, Gogotsi Y. Monitoring oxidation of multiwalled carbon nanotubes by Raman spectroscopy. J Raman Spectrosc. 2007;38:728–36.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the ECOS-Nord program C08P01 for the financial support. F. Mondragon and J. Gallego acknowledge the “Sostenibilidad” Program 2013–2014 from the University of Antioquia. J. Gallego would like to thank Colciencias and the University of Antioquia for the PhD scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaime Gallego.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gallego, J., Batiot-Dupeyat, C. & Mondragón, F. Activation energies and structural changes in carbon nanotubes during different acid treatments. J Therm Anal Calorim 114, 597–602 (2013). https://doi.org/10.1007/s10973-013-2987-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-013-2987-5

Keywords

Navigation