Skip to main content
Log in

Preparation and characterization of phenolic foams with eco-friendly halogen-free flame retardant

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The high solid resol phenolic resin was prepared via step polymerization of formaldehyde, paraformaldehyde, and phenol using sodium hydroxide and calcium oxide as catalysts, and employed to prepare the phenolic foams (PFs) by the introduction of retardant additives including eco-friendly halogen-free flame retardants (ammonium polyphosphate), char-forming agents (pentaerythritol), and synergists (zinc oxide, molybdenum trioxide, cuprous chloride, and stannous chloride). The effects of these additives on flame retardancy, heat resistance, and fire properties of flame-retardant composite phenolic foams (FRCPFs) were evaluated by limiting oxygen index (LOI) tests, thermogravimetric analyzer, and cone calorimeter tests. It was found that the flame retardan significantly increased the LOIs of FRCPFs. Compared with PF, heat release rate, total heat release, effective heat of combustion, production or yield of carbon monoxide (COP or COY), and Oxygen consumption (O2C) of FRCPFs all remarkably decreased. However specific extinction area and total smoke release significantly increased, which agreed with the gas-phase mechanism of the flame-retardant system. The results indicate that FRCPFs have excellent fire-retardant performance and less smoke release. APP/PER/ZnO is shown to be better flame-retardant system for PFs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Schipper P, Black J, Dymeck T. Foamed rigid vinyl for building products. J Vinyl Addit Technol. 1996;2:304–9.

    Article  CAS  Google Scholar 

  2. Matuana LM, Park CB, Balatinecz J. The effect of low level of plasticizer on the rheological and mechanical properties of polyvinyl chloride/new sprint-fiber composites. J Vinyl Addit Technol. 1997;3:265–73.

    Article  CAS  Google Scholar 

  3. Juntunen RP, Kumar V, Weller JE, Bezubic WP. Impact strength of high density microcellular PVC foams. J Vinyl Addit Technol. 2000;6:93–9.

    Article  CAS  Google Scholar 

  4. Stec AA, Hull TR. Assessment of the fire toxicity of building insulation materials. Energy Build. 2011;43:498–506.

    Article  Google Scholar 

  5. Lei SW, Guo QG, Zhang DQ, Shi JL, Liu L, Wei XH. Preparation and properties of the phenolic foams with controllable nanometer pore structure. J Appl Polym Sci. 2010;117:3545–50.

    CAS  Google Scholar 

  6. Shen HB, Lavoie AJ, Nutt SR. Enhanced peel resistance of fiber reinforced phenolic foams. Compos A. 2003;34:941–8.

    Article  Google Scholar 

  7. Shen HB, Nutt S. Mechanical characterization of short fiber reinforced phenolic foam. Compos A. 2003;34:899–906.

    Article  Google Scholar 

  8. Yang HY, Wang X, Yuan HX, Song L, Hu Y, Yuen RKK. Fire performance and mechanical properties of phenolic foams modified by phosphorus-containing polyethers. J Polym Res. 2012;19:9831–40.

    Article  Google Scholar 

  9. Rangari VK, Hassan TA, Zhou YX, Mahfuz H, Jeelani S, Prorok BC. Cloisite clay-infused phenolic foam nanocomposites. J Appl Polym Sci. 2007;103:308–14.

    Article  CAS  Google Scholar 

  10. Auad ML, Zhao LH, Shen HB, Nutt SR, Sorathia U. Flammability properties and mechanical performance of epoxy modified phenolic foams. J Appl Polym Sci. 2007;104:1399–407.

    Article  CAS  Google Scholar 

  11. Wu K, Wang ZZ, Hu Y. Microencapsulated ammonium polyphosphate with urea-melamine-formaldehyde shell: preparation, characterization, and its flame retardance in polypropylene. Polym Adv Technol. 2008;19:1118–25.

    Article  CAS  Google Scholar 

  12. Wang LC, Jiang JQ, Jiang PK, Yu JH. Synthesis, characteristic of a novel flame retardant containing phosphorus, silicon and its application in ethylene vinyl-acetate copolymer (EVM) rubber. J Polym Res. 2010;17:891–902.

    Article  CAS  Google Scholar 

  13. Wu K, Song L, Wang ZZ, Hu Y. Preparation and characterization of double shell microencapsulated ammonium polyphosphate and its flame retardance in polypropylene. J Polym Res. 2009;16:283–94.

    Article  CAS  Google Scholar 

  14. Mathan ND, Arunjunairaj M, Rajkumar T, Ponraju D, Vijayakumar CT. Thermal degradation of pentaerythritol phosphate alcohol TG and TG-MS studies. J Therm Anal Calorim. 2011;110:1133–41.

    Article  Google Scholar 

  15. Camino G, Grassie N, McNeill IC. Influence of the fire retardant, ammonium polyphosphate on the thermal degradation of poly (methyl methacrylate). J Polym Sci Polym Chem Ed. 1978;16:95–106.

    Article  CAS  Google Scholar 

  16. Li B, Sun CY, Zhang C. An investigation of flammability of intumescent flame retardant polyethylene containing starch by using cone calorimeter. Chem J Chin Univ. 1999;20:146–9.

    CAS  Google Scholar 

  17. Li B, Xu MJ. Effect of a novel charring foaming agent on flame retardancy and thermal degradation of intumescent flame retardant. Polym Degrad Stab. 2006;91:1380–6.

    Article  CAS  Google Scholar 

  18. Allen DW, Edwyn C. Structure-property relationships in intumescent fire retardant derivatives of 4-hydroxymethyl-2, 6, 7-trioxa-1-phosphabicyclo [2, 2, 2] octane-1-oxide anderton. Polym Degrad Stab. 1994;45:399–408.

    Article  CAS  Google Scholar 

  19. Hu XP, Li YL, Wang YZ. Synergistic effect of the charring agent on the thermal and flame retardant properties of polyethylene. Macromol Mater Eng. 2004;289:208–12.

    Article  CAS  Google Scholar 

  20. Almeras X, Dabrowski F, Bras ML, Delobel R, Bourbigot S, Marosi G, Anna P. Using polyamide 6 as charring agent in intumescent polypropylene formulations. II. Thermal degradation. Polym Degrad Stab. 2002;77:315–23.

    Article  CAS  Google Scholar 

  21. Liu Y, Yi JS, Cai XF. The investigation of intumescent flameretarded polypropylene using poly (hexamethylene terephthalamide) as carbonization agent. J Therm Anal Calorim. 2012;107:1191–7.

    Article  CAS  Google Scholar 

  22. Zhang Q, Cheng YH. Synergistic effects of ammonium polyphosphate/melamine intumescent system with macro- molecular char former in flame-retarding polyoxymethylene. J Therm Anal Calorim. 2011;18:293–303.

    CAS  Google Scholar 

  23. Jiao CM, Chen XL. Synergistic effects of zinc oxide with layered double hydroxides in EVA/LDH composites. J Therm Anal Calorim. 2009;98:813–8.

    Article  CAS  Google Scholar 

  24. Yin HQ, Yuan DD, Cai XF. Red phosphorus acts as second acid source to form a novel intumescent-contractive flame-retardant system on ABS. J Therm Anal Calorim. 2012. doi:10.1007/s1097301225367.

    Google Scholar 

  25. Wang XL, Wu LH, Li J. Synergistic flame retarded poly (methyl methacrylate) by nano-ZrO2 and triphenylphosphate. J Therm Anal Calorim. 2011;103:741–6.

    Article  CAS  Google Scholar 

  26. Yi JS, Liu Y, Cai XF. The synergistic effect of adjuvant on the intumescent flame retardant ABS with a novel charring agent. J Therm Anal Calorim. 2012. doi:10.1007/s1097301228028.

    Google Scholar 

  27. Ribeiro SPS, Estevão LRM, Nascimento RSV. Brazilian clays as synergistic agents in an ethylenic polymer matrix containing an intumescent formulation. J Therm Anal Calorim. 2007;87:661–5.

    Article  CAS  Google Scholar 

  28. Yi JS, Yin HQ, Cai XF. Effects of common synergistic agents on intumescent flame retardant polypropylene with a novel charring agent. J Therm Anal Calorim. 2013;111:725–34.

    Article  CAS  Google Scholar 

  29. PN-76/C-89020, Plastics. Determination of Ignitability by the Method of Limiting Oxygen Index (LOI).

  30. Kim J, Lee JH, Kim S. Estimating the fire behavior of wood flooring using a cone calorimeter. J Therm Anal Calorim. 2012;110:677–83.

    Article  CAS  Google Scholar 

  31. Lomakin SM, Dubnikova IL, Shchegolikhin AN, Zaikov GE, Kozlowski R, Kim GM, Michler GH. Thermal degradation and combustion behavior of the polyethylene/clay nanocomposite prepared by melt intercalation. J Therm Anal Calorim. 2008;94:719–26.

    Article  CAS  Google Scholar 

  32. Janowska G, Kucharska-Jastrząbek A, Rybiński P. Thermal stability, flammability and fire hazard of butadiene- acrylonitrile rubber nanocomposites. J Therm Anal Calorim. 2011;103:1039–46.

    Article  CAS  Google Scholar 

  33. Ye L, Qu BJ. Flammability characteristics and flame retardant mechanism of phosphate-intercalated hydrotalcite in halogen-free flame retardant EVA blends. Polym Degrad Stab. 2008;93:918–24.

    Article  CAS  Google Scholar 

  34. Fang YQ, Wang QW, Bai XY, Wang WH, Cooper PA. Thermal and burning properties of wood flour (polyvinyl chloride) composite. J Therm Anal Calorim. 2012;109:1577–85.

    Article  CAS  Google Scholar 

  35. Wang CC, Dai Z, Xu GW. Research on hard-segment flame-retardant modification of waterborne polyurethane. China Coat. 2010;8:57–60.

    Google Scholar 

  36. Ou YX, Li JJ. Frame retardant. Beijing: Chemical Industry Press; 2006.

    Google Scholar 

  37. Ou YX. Practical flame retardant technology. Beijing: Chemical Industry Press; 2003.

    Google Scholar 

  38. Zarate CN, Aranguren MI, Reboredo MM. Thermal degradation of a phenolic resin, vegetable fibers, and derived composites. J Appl Polym Sci. 2008;107:2977–85.

    Article  CAS  Google Scholar 

  39. Ouyang ZH, Wu L, Yi DL, Qin XR, Cao SC, Wang Y, Lan L. Study on Mo PF used as bonding agent. Chem Ind Eng Prog. 2005;8:901–4.

    Google Scholar 

  40. Wu FC, Deng HF. Organic boron modified phenol ic resin heat of the study. J North China Inst Sci Technol. 2007;2:29–32.

    Google Scholar 

  41. Blanco I, Abate L, Bottino FA, Bottino P, Chiacchio MA. Thermal degradation of differently substituted cyclopentyl polyhedral oligomeric silsesquioxane (CP-POSS) nanoparticles. J Therm Anal Calorim. 2012;107:1083–91.

    Article  CAS  Google Scholar 

  42. Blanco I, Oliveri L, Cicala G, Recca A. Effects of novel reactive toughening agent on thermal stability of epoxy resin. J Therm Anal Calorim. 2012;108:685–93.

    Article  CAS  Google Scholar 

  43. ISO 5660 Reaction-to-fire tests-heat release, smoke production and mass loss rate.

  44. Li B, Wang JQ. Utilization of cone calorimeter for the appraisal of the flammability and flame retardancy of polymeric materials. Polym Mater Sci Eng. 1998;5:15–9.

    Article  Google Scholar 

  45. Deng XB, Wang JG, Liu BL. Application of cone calorimeter in the study of combustion properties on finishing fire retardant paint. Paint Coat Ind. 2011;12:50–3.

    Google Scholar 

  46. Almeras X, Bras ML, Hornsby P, Bourbigot S, Marosi G, Keszei S, Poutch F. Effect of fillers on the fire retardancy of intumescent polypropylene compounds. Polym Degrad Stab. 2003;82:325–31.

    Article  CAS  Google Scholar 

  47. Manfredi LB, Rodríguez ES, Wladyka-Przybylak M, Vázquez A. Thermal degradation and fire resistance of unsaturated polyester, modified acrylic resins and their composites with natural fibres. Polym Degrad Stab. 2006;91:255–61.

    Article  CAS  Google Scholar 

  48. Zhu XS, Pan QQ, Xu HS, Lu JM. Effects of coal and ammonium polyphosphate on thermal degradation and flame retardancy of polyethylene terephthalate. J Polym Res. 2010;17:621–9.

    Article  CAS  Google Scholar 

  49. Yeh JT, Hsieh SH, Cheng YC, Yang MJ, Chen KN. Combustion and smoke emission properties of poly (ethylene terephthalate) filled with phosphorous and metallic oxides. Polym Degradation Stab. 1998;61:399–407.

    Article  CAS  Google Scholar 

  50. Zhang J, Silcock GWH, Shields TJ. Study of the combustion and ire retardancy of polyacrylonitrile and its copolymers by using cone calorimetry. J Fire Sci. 1995;13:141–61.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The study was partially financially supported by the National Key Technology Research and Development Program of the Ministry of Science and Technology of China (2012BAD24B04) and National Natural Science Foundation of China (31200448).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chunpeng Wang or Fuxiang Chu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, Y., Wang, J., Xu, Y. et al. Preparation and characterization of phenolic foams with eco-friendly halogen-free flame retardant. J Therm Anal Calorim 114, 1143–1151 (2013). https://doi.org/10.1007/s10973-013-3180-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-013-3180-6

Keywords

Navigation