Skip to main content
Log in

Characterization of palygorskite clay from Piauí, Brazil and its potential use as excipient for solid dosage forms containing anti-tuberculosis drugs

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Clays play an important role in health products as it has been used as excipients for solid dosage forms and as active ingredients. Usually, excipients are pharmacologically inert, but they can interact with drugs in the solid dosage form and affect their bioavailability. Thus, the aim of this work was to determinate the physicochemical properties of palygorskite clay from Piauí, Brazil, and to investigate the potential use of this mineral as excipient for solid dosage forms containing rifampicin and isoniazid, which are drugs currently used to treat tuberculosis. Palygorskite was analyzed by X-ray fluorescence, X-ray diffraction, transmission electron microscopy, and particle size analyzer. According to the results, the main component found was SiO2, and its mineral composition contains palygorskite, dolomite, and quartz. The particles appear as fibers with bundle-like aspect that cluster together to form aggregates. The results from thermal analysis indicate that there is no interaction between both rifampicin and isoniazid with palygorskite. Moreover, the presence of palygorskite did not interfere on the dissolution of these drugs, which suggests that this material can be potentially used as an excipient for these drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Dutra RPS, Varela ML, Gomes UU, Nascimento do RM, Paskocimas CA, Melo PT. Avaliação da Potencialidade de Argilas do Rio Grande do Norte-Brasil. Cerâm Industr. 2006;36(2):42–6.

    Google Scholar 

  2. Viseras C, Lopez-Galindo A. Pharmaceutical applications of some spanish clays (sepiolite, palygorskite, bentonite): some preformulations studies. Appl Clay Sci. 1999;14:69–82.

    Article  CAS  Google Scholar 

  3. Iborra CV, Cultrone G, Cerezo P, Aguzzi C, Baschini MT, Vllés J, Lopez-Galindo A. Characterisation of northern patagonian bentonites for pharmaceutical uses. Appl Clay Sci. 2006;32:272–81.

    Article  Google Scholar 

  4. Carretero MI, Pozo M. Clay and non-clay minerals in the pharmaceutical industry, part I: excipients and medical applications. Appl Clay Sci. 2009;46:73–80.

    Article  CAS  Google Scholar 

  5. Carretero MI, Pozo M. Clay and non-clay minerals in the pharmaceutical and cosmetical industries, part II: active ingredients. Appl Clay Sci. 2010;47:171–81.

    Article  CAS  Google Scholar 

  6. Jung H, Kim H, Choy YB, Hwang SJ, Choy JH. Laponite-based nanohybrid for enhanced solubility and controlled release of itraconazole. Int J Pharm. 2008;349:283–90.

    Article  CAS  Google Scholar 

  7. Park JK, Choy YB, Oh JM, Kima JY, Hwanga SJ, Choy JH. Controlled release of donepezil intercalated in smectite clays. Int J Pharm. 2008;359:198–204.

    Article  CAS  Google Scholar 

  8. Joshi GV, Kevadiya BD, Patel HA, Bajaj HC, Jasra RV. Montmorillonite as a drug delivery system: intercalation and in vitro release of timolol maleate. Int J Pharm. 2009;374:53–7.

    Article  CAS  Google Scholar 

  9. Cornejo J, Hermosin MC, White JL, Peck GE, Hhem SL. Role of ferric iron in the oxidation of hydrocortisone by sepiolite and palygorskite. Clays Clay Miner. 1983;31(2):109–12.

    Article  CAS  Google Scholar 

  10. White JL, Hem SL. Pharmaceutical aspects for clay–organic interactions. Ind Eng Chem Prod Res Dev. 1983;22:665–71.

    Article  CAS  Google Scholar 

  11. Naggar VF. An in vitro study of the interaction between diazepam and some antacids or excipients. Pharmazie. 1981;36:114–7.

    CAS  Google Scholar 

  12. Dhanaraju MD, Kumaran KS, Baskaran T, Moorthy MS. Enhancement of bioavailability of griseofulvin by its complexation with beta-cyclodextrin. Drug Dev Ind Pharm. 1998;24(6):583–7.

    Article  CAS  Google Scholar 

  13. Panakanti R, Narang AS. Impact of excipient interactions on drug bioavailability from solid dosage forms. Pharm Res. 2012. doi:10.1007/s11095-012-0767-8.

    Google Scholar 

  14. Santos AFO, Basilio ID, de Souza FS, Medeiros AFD, Pinto MF, de Santana DP, et al. Application of thermal analysis in study of binary mixtures with metformin. J Therm Anal Calorim. 2008;93:361–4.

    Article  CAS  Google Scholar 

  15. Freire F, Aragão CF, Moura TFAL, Raffin FN. Compatibility study between chlorpropamide and excipients in their physical mixtures. J Therm Anal Calorim. 2009;97:355–7.

    Article  CAS  Google Scholar 

  16. Lavor EP, Freire F, Aragão CF, Moura TFAL, Raffin FN. Application of thermal analysis to the study of anti-tuberculosis drug compatibility: part I. J Therm Anal Calorim. 2011. doi:10.1007/10973-01101770-8.

    Google Scholar 

  17. Pinto MA, de Moura EA, de Souza FS, Macêdo RO. Thermal compatibility studies of nitroimidazoles and excipients. J Therm Anal Calorim. 2010;102:323–9.

    Article  CAS  Google Scholar 

  18. Frost RL, Ding Z. Controlled rate thermal analysis and differential scanning calorimetry of sepiolites and palygorskites. Thermochim Acta. 2003;397:119–28.

    Article  CAS  Google Scholar 

  19. World Health Organization. Global tuberculosis control: WHO report 2011. Available at: http://www.who.int/tb/publications/global_report/2011/gtbr11_full.pdf Accessed 03 July 2012.

  20. Amidon GL, Lennernäs H, Shah VP, Crison JR. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res. 1995;12:413–20.

    Article  CAS  Google Scholar 

  21. Shishoo CJ, Shah SA, Rathod IS, Savale SS, Vora MJ. Impaired bioavailability of rifampicin in presence of isoniazid from fixed dose combination (FDC) formulation. Int J Pharm. 2001;228:53–67.

    Article  CAS  Google Scholar 

  22. Pelizza G, Nebuloni M, Ferrari P, Gallo GG. Polymorphism of rifampicin. Farmaco Sci. 1977;32:471–81.

    CAS  Google Scholar 

  23. Henwood SQ, de Villiers MM, Leibenberg W, Lotter AP. Solubility and dissolution properties of generic rifampicin raw materials. Drug Dev Ind Pharm. 2000;26:403–8.

    Article  CAS  Google Scholar 

  24. Singh S, Mariappan TT, Sankar R, Sarda N, Singh B. A critical review of the probable reasons for the poor/variable bioavailability of rifampicin from anti-tubercular fixed-dose combination (FDC) products, and the likely solutions to the problem. Int J Pharm. 2001;228:5–17.

    Article  CAS  Google Scholar 

  25. Agrawal S, Ashokraj Y, Bharatam PV, Pillai O, Panchagnula R. Solid state characterization of rifampicin samples and its biopharmaceutic relevance. Eur J Pharm Sci. 2004;22:127–44.

    Article  CAS  Google Scholar 

  26. Liu H, Chen T, Chang D, Chen D, Qing C, Xie J, Frost RL. The difference of thermal stability between Fe-substituted palygorskite and Al-rich palygorskite. J Therm Anal Calorim. 2012. doi:10.1007/s10973-012-2363-x.

    Google Scholar 

  27. Cheng H, Yang J, Frost RL. Thermogravimetric analysis–mass spectrometry (TG–MS) of selected Chinese palygorskites: implications for structural water. Thermochim Acta. 2011;512:202–7.

    Article  CAS  Google Scholar 

  28. Freire F, Aragão CF, Moura TFAL, Raffin FN. Thermal studies of isoniazid and mixtures with rifampicin. J Therm Anal Calorim. 2009;97:333–6.

    Article  CAS  Google Scholar 

  29. Akyuz S, Akyuz T, Akalin E. Adsorption of isoniazid onto sepiolite–palygorskite group of clays: an IR study. Spectrochim Acta Part A. 2010;75:1304–7.

    Article  Google Scholar 

  30. Lavor EP, Freire FD, Aragão CF, Raffin FN, Moura TFAL. Application of thermal analysis to the study of anti-tuberculosis drug-excipient compatibility Part 1. J Therm Anal Calorim. 2012;108:207–12.

    Article  CAS  Google Scholar 

  31. Wang J, Wen H, Desai D. Lubrication in tablet formulations. Eur J Pharm Biopharm. 2010;75:1–15.

    Article  Google Scholar 

  32. McGinity JW, Harris MR. Increasing dissolution rates of poorly soluble drugs by adsorption to montmorillonite. Drug Dev Ind Pharm. 1980;6:35–48.

    Article  CAS  Google Scholar 

  33. Sanganwar GP, Gupta RB. Dissolution-rate enhancement of fenofibrate by adsorption onto silica using supercritical carbon dioxide. Int J Pharm. 2008;360(1–2):213–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank NUPLAM/UFRN for the supply the samples and FAPERN and CNPq for financial support for this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Túlio F. A. de Lima e Moura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

dos Santos Soares, D., Fernandes, C.S., da Costa, A.C.S. et al. Characterization of palygorskite clay from Piauí, Brazil and its potential use as excipient for solid dosage forms containing anti-tuberculosis drugs. J Therm Anal Calorim 113, 551–558 (2013). https://doi.org/10.1007/s10973-013-3291-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-013-3291-0

Keywords

Navigation